Получение воды из воздуха с помощью эффекта гиперконденсации является очень простой, надежной, недорогой и эффективной технологией. Для функционирования установки получения воды не нужны никакие источники энергии. Установка использует только солнечную энергию от самого Солнца. Установка получения воды действует по принципу «поставил и забыл». Установка производительностью 1500 литров за световой день занимает участок земли, освещаемый солнцем, размером 3х3 метра. В городе её можно разместить на крыше жилого дома,

Технология ожидает финансирования!

Описание:

Получение воды из воздуха с минимальными энергетическими затратами, а то и вовсе без них является перспективной технологией.


или пиши нам

Получение кремния карботермическим способом...

Бесшовная кровля. Напыляемая, жидкая кровля...

Инфракрасная пленка - пленочный электронагре...

Увеличение нефтеотдачи газовым методом...

32-разрядный микроконтроллер...

Длительное хранение информации...

Совмещенная обмотка Славянка...

Берегоукрепление дамбами в чрезвычайных ситуациях...

Упрочнение пластика, пластмассы и полиэтилена...

Нехватка воды становится одним из главных факторов, сдерживающих развитие цивилизации во многих регионах Земли. В ближайшие 25-30 лет мировые запасы пресной воды сократятся в два раза.

За последние сорок лет количество чистой пресной воды из расчета на каждого человека уменьшилось практически на 60%. Как результат, сегодня около двух миллиардов людей в более чем 80 странах страдают от недостатка питьевой воды.

А уже к 2025 году ситуация более усугубится, по прогнозам недостаток питьевой воды ощутят на себе более трех миллиардов человек.

Только 3% пресной воды Земли находятся в реках, озёрах и почве, из них для человека легкодоступен только 1%. Несмотря на то, что цифра невелика этого было бы вполне достаточно для полного удовлетворения человеческих потребностей в случае если бы вся пресная вода (именно этот 1%) была распределена равномерно по местам проживания человека.

Атмосферный воздух является гигантским резервуаром влаги, и даже в засушливых районах содержит, как правило, более 6-10 г воды на 1 м3. А в 1 км3 приземного слоя атмосферы в жарких, засушливых и пустынных областях Земли содержится до 20 000 тонн водяных паров. Количество воды, находящейся в каждый данный момент в атмосфере Земли, равно 14 тыс. км3, в то время как во всех речных руслах всего 1,2 тыс. км3. Однако погодно-климатические условия в этих зонах не позволяют водяным парам достигнуть состояния насыщения и выпасть в виде осадков.

Ежегодно с поверхности суши и океана испаряется около 577 тысяч кубокилометров воды которые потом выпадают в виде осадков. В этом объеме речной годовой сток составляет лишь 7% от общего количества осадков. Сравнивая общее количество испаряющейся влаги и количество воды в атмосфере можно сделать вывод: в течение года вода в атмосфере обновляется 45 раз.

Взгляд в прошлое


В истории человечества есть примеры добывания атмосферной влаги из воздуха, один из них – колодцы, построенные вдоль Великого шёлкового пути, величайшего в истории человечества инженерно-транспортного сооружения. Они были вдоль всего пустынного пути на расстоянии в 12-15 км друг от друга. В каждом из них количество воды было достаточно для того, чтобы напоить караван в 150 - 200 верблюдов.

В таком колодце чистая вода получалась из атмосферного воздуха. Разумеется, процентное содержание водяных паров в пустынном воздухе крайне незначительно (меньше 0,01% удельного объёма). Но, благодаря конструкции колодца через его объём «прокачивался» пустынный воздух тысячами кубометров в сутки и у каждого такого кубометра отнималась практически вся масса воды, содержащаяся в нём.

Сам колодец был наполовину своей высоты вкопан в грунт. Путешественники спускались за водой по лестницам, на отмостки и черпали воду. В центре возвышалась аккуратно выложенная высоким конусом груда камней углубления для скопившейся воды. Арабы свидетельствуют, что скопившаяся вода, и воздух на уровне отмостков, были на удивление холодными, хотя снаружи колодца стояла убийственная жара. Нижняя тыльная часть камней в груде была влажной, а на ощупь камни были холодными.

Стоит только обратить внимание на тот факт, что керамическая облицовка и в те времена была недешёвым материалом, но строители колодцев не считались с затратами и делали такие покрытия над каждым колодцем. А ведь это делалось неспроста, материалу из глины можно придать любую необходимую форму, затем отжечь и получить готовую деталь, способную работать в самых тяжёлых климатических условиях,долгие годы.

В конусном или шатровом своде колодца были выполнены радиальные каналы, прикрытые керамической облицовкой, или сама керамическая облицовка представляла собой набор деталей с уже готовыми сечениями радиальных каналов. Нагреваясь под лучами солнца, облицовка передавала часть тепловой энергии воздуху в канале. Возникало конвективное течение нагретого воздуха по каналу. В центральную часть свода вбрасывались струи нагретого воздуха. Но, как и почему появлялось вихревое движение внутри здания колодца?

Самое первое предположение – ось каналов не совпадала с радиальным направлением. Имелся небольшой угол между осью канала и радиусом свода, то есть, струи были тангенциальными (Рис. 2). Строители использовали очень малые углы тангенциальности. Вероятно, поэтому технологический секрет инженеров древности остаётся неразгаданным и по сей день.

Использование струй малой тангенциальности с доведением их числа до бесконечности открывает новые возможности в вихревых технологиях. Только не надо при этом воображать себя первопроходцами. Инженеры в древности довели эту технологию до совершенства. Высота здания колодца, включая его вкопанную часть, составляла 6 - 8 метров при диаметре здания в основании не более 6 метров, но в колодце возникало и устойчиво работало вихревое движение воздуха.

Охлаждающий эффект вихря использовался с очень высоким КПД. Конусная груда камней действительно исполняла роль конденсатора. Ниспадающий «холодный» осевой поток вихря отнимал тепло камней, охлаждал их. Водяной пар, содержащийся в ничтожных количествах в каждом удельном объёме воздуха, конденсировался на поверхностях камней. Таким образом, в углублении колодца шёл постоянный процесс накопления воды.

«Горячий» периферийный поток вихря выбрасывался наружу через входные проёмы лестничных спусков в колодец (Рис. 3). Только этим можно объяснить наличие сразу нескольких спусков внутрь колодца. Благодаря большой инерционности вращения вихревого образования, колодец работал круглосуточно. При этом каких-либо других видов энергии, кроме солнечной, использовано быть не может. Вода добывалась и днём, и ночью. Вполне возможно, что ночью колодец работал даже интенсивнее, чем днём, поскольку температура воздуха пустыни после захода солнца падает на 30…40єС, что сказывается на его плотности и влажности.

Современный метод


В результате проведённых экспериментов омским изобретателем было найдено комплексное технологическое решение. Изобретенная им установка по извлечению влаги из атмосферного воздуха, помимо основной своей задачи, позволяет удалить из воздуха частицы пыли, даже самой мельчайшей фракции.

Метод позволяет сконденсировать всю газообразную влагу, присутствующую в воздушном потоке, достигая температуры конденсации и каплеобразования, исключительно газодинамическим способом без применения хладагента.

Технологическое решение состоит из двух ступеней. При прохождении воздуха через первую ступень создается интенсивно-закрученное течение с целью разделения частиц пыли и воздуха с последующим осаждением пыли в бункере. Во второй ступени чтобы с достаточной эффективностью сконденсировать влагу воздух необходимо охладить.

Итак, весь объём поступающего воздуха в градиентном сепараторе интенсивно закручивается, и в конфузорной части градиентного сепаратора происходит его расслоение и разделение на основные две составляющие зоны – центральную и периферийную.

Так как, в поперечном сечении закрученного потока разряжение формирующееся центрального вихря намного превышает разряжение периферийного торроидального вихря, то газообразная влага попросту втягивается и концентрируются в центральной зоне канала в виде «шнура». В центре закрученного потока вследствие понижения температуры начинает происходить частичная конденсация водяных паров, мельчайших частицы пыли соприкасаются друг с другом, это в результате приводит к интенсивной коагуляции частиц пыли.

На основании вполне изученных инерционных сил, сам воздух прижимается по периферии и абсолютно без какого-либо избыточного давления как бы «переуплотняется», правильнее даже применить такой термин как «псевдо-уплотнение» и через отборный периферийно-радиальный патрубок посредством дымососа направляется обратно в атмосферу.

При работе градиентного сепаратора, над его заборным соплом формируется искусственный смерч, имеющий размеры как у естественно образовавшегося, но с гораздо более высокой интенсивностью вращения.

Далее насыщенную влаго-воздушную смесь отсасывают через пылеотборный патрубок по оси канала и направляют на вторую ступень сепарации, где она пропускается через второй градиентный сепаратор и происходит конденсация водяных паров в водоприёмном бункере.

7. Дымосос периферийного отбора 2-й ступени;
8. Пылеосадительный бункер №1.
9. Водопринимаемый бункер №2.

Минимальная производительность установки, при которой можно получить ощутимый эффект влагообразования – 150 000 нм³/час. Количество воды, которое можно получить с этой установки составляет 1,357 тонны в час или 32,58 тонн в сутки.

Принцип действия

ГВ представляет собой пирамидальный каркас с влагопоглощающим наполнителем. Пирамидальный каркас образован четырьмя стойками поз. 3, приваренными к основанию поз. 4, выполненною из металлического уголка.

В пространство между уголками основания вварена металлическая сетка поз. 15; снизу к основанию при помощи накладок поз. 6 крепится полиэтиленовый поддон поз. 5 с отверстием посередине.

Внутреннее пространство сетчатого каркаса плотно (но без деформации стенок) заполняется влагопоглощающим материалом. Снаружи на пирамидальный каркас надевается прозрачный купол поз. 1, который фиксируется при помощи четырех растяжек поз. 8 и амортизатора поз. 14. ГВ имеет два рабочих цикла: поглощение влаги из воздуха наполнителем; выпаривание влаги из наполнителя с последующей ее конденсацией на стенках купола.

С заходом солнца прозрачный купол поднимают, чтобы обеспечить доступ воздуха к наполнителю; наполнитель поглотает влагу всю ночь.

Утром купол опускается и герметизируется амортизатором; солнце выпаривает влагу из наполнителя, пар собирается в верхней части пирамиды, конденсат стекает по стенкам купола на поддон и через отверстие в нем наполняет водой подставленную емкость.

Изготовление генератора воды

Подготовку к изготовлению ГВ начинают со сбора наполнителя.

В качестве наполнителя используются обрезки газетной бумаги; бумагу от газет нужно брать свободную от типографского шрифта во избежание засорения получаемой воды соединениями свинца.

Работа по сбору бумаги займет немало времени, вот за это время изготавливаются остальные элементы ГВ.

Основание сваривается из металлических уголков с размерами полок 35x35 мм, снизу к нему привариваются четыре опоры поз. 10 из таких же уголков и восемь кронштейнов поз. 13. Кронштейны соединяются между собой стальными прутками поз. 17 длиной 930 мм. диаметр 10 мм.

Сверху на полки уголков приваривается металлическая сетка с размером ячеек 15x15 мм. диаметр проволоки сетки 1,5-2 мм.

Из стальной ленты вырезаются четыре накладки поз. 6. По отверстиям в накладках сверлятся отверстия диаметром 4,5 мм в уголках основания и нарезается резьба под винты ВМ 5; Затем основание устанавливают на место, определенное для ГВ на садовом участке, огороде и т.д.

Место нужно выбирать так, чтобы ГВ не затенялся деревьями и постройками. После выбора места опоры основания фиксируется в земле цементным раствором. Допускается к опорам приварить опорные пятаки диаметром 100 мм из стального листа толщиной 2 мм.

После этого в углы квадрата основания привариваются поочередно четыре стойки таким образом, стойки оказались длинной 30 мм оказались в центре основания на высоте примерно.

Материал поперечин такой же как у стоек.

Затем из полиэтиленовой пленки толщиной 1 мм вырезается поддон поз. 5; края поддона, которые окажутся под накладками, подворачивают для усиления места крепления. В центре поддона вырезают круглое отверстие диаметром 70 мм - для стока воды. Края отверстий также можно усилить путем приваривания дополнительной накладки из полиэтилена.

Далее производят фиксацию на стойках сетчатого каркаса, представляющего собой мелкоячеистую рыболовную сеть с размером ячеек 15x15 мм. Сеть подвязывается к стойкам и краям поддона из металлической сетки при помощи х/б тесьмы так. чтобы сеть была туго натянута между стоек.

Желательно также подвязать сеть и к поперечинам, поделив внутренний объем пирамиды на два отсека.

Перед подвязкой сети к последней стойке, отсеки (начиная с верхнего) получившегося сетчатого каркаса плотно заполняется скомканными обрезками газетной бумаги. Заполнение производить так, чтобы не оставалось свободного места внутри пирамиды и выступание сетчатых стенок было минимальным.

Затем приступают к изготовлению прозрачного купола.

Он выполнен из полиэтиленовой пленки, раскрой которой производится согласно чертежа поз. 1 и сваривается паяльником по плоскостям А, А1. Шов выполнять без перегрева, чтобы полиэтилен не становился ломким в месте сварки.

Для предотвращения нарушения целостности купола в вершине пирамиды ее накрывают своеобразной полиэтиленовой "шапочкой" - фрагмент В по чертежу поз. 1. Затем, предварительно надев фрагмент В на пирамиду, аккуратно надевают на каркас купол. Расправив купол, сваривают между собой края плоскостей С: получается своеобразная крыша.

Эксплуатация

С заходом солнца прозрачный купол подворачивают до уровня поперечин и фиксируют в таком положении растяжками, надев крюки на прутки поз. 17.

За ночь бумага вберет в себя влагу и, утром купол опускают, фиксируя его нижний край на основании амортизатором.

За день солнце раскалит пирамиду, влага из бумаги испарится, пар по мере остывания конденсируется на стенках в воду, которая стекает вниз. Воду набирают, подставив какую-либо емкость под отверстие в полиэтиленовом поддоне.

С заходом солнца цикл повторяют.


Воду надо ценить и не лить почём зря. В современном мире об этом знают даже дети. Городскому жителю проще всего оценить всю значимость этого суждения, если представить себя в пустыне, где воду можно достать только лишь из-под земли и из воздуха. И то при определённой сноровке. Но мы расскажем не о способах сбора чистой воды в экстремальных обстоятельствах, а об устройствах, которые облегчают жизнь людей, добывая её из воздуха.

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой…» А это примерно 326 миллионов кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% — пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

Круговорот воды в природе и участие в нём генераторов воды из воздуха (иллюстрация AirWater Corporation).

К 2025 году девять миллиардов человек на планете будут делить всё то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы.

А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тысяч кубических километров влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёплый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).


Карта доступности воды Gleick 1998 (иллюстрация Water Master).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной воды, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5 °С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах.

В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Air2Water

Устройства , разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом.

Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair – американское дочернее предприятие RG Global Lifestyles , появившееся на свет в 2004 году. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды (результат – пятиступенчатый фильтр).

Н. ХОЛИН, профессор, Г. ШЕНДРИКОВ, инженер
Рис. И. КАЛЕДИНА и Н. РУШЕВА
Техника молодёжи №7 1957 год.

Подземный дождь

Нещадно палит летнее солнце и дуют знойные ветры.


Почва настолько иссушена, что покрылась густой сетью глубоких трещин. Растения опустили листья, им явно не хватает влаги.

Там, где близко находится вода, люди поливают землю. Но попробуйте напоить ее, когда поблизости нет большого водоема.

А ведь поверхностному поливу сопутствует ряд отрицательных моментов, в результате чего нарушается жизнедеятельность растения. Сильно переувлажняется верхний слой и в то же время прекращается доступ воздуха в нижние слои почвы, снижается полезная деятельность микроорганизмов. Для развития же сорняков и вредителей такой полив создает особо благоприятные условия. На поверхности почвы откладываются вредные соли, образуется корка. А потом, когда рыхлят почву, ухудшается ее структура, повреждаются корни. Помимо всего, теряется много воды на испарение и фильтрацию.

Поэтому уже давно ведутся работы по созданию такого способа орошения, при котором влага попадала бы сразу к корням растений.

Испытывались различные системы, но все они широкого распространения не получили, так как были несовершенными. В одних случаях поливные сооружения получались сложными и очень дорогими, в других - не удовлетворяли агротехническим требованиям.

Однажды авторы этой статьи сконструировали очень простой и удобный гидробур для нагнетания в почву глинистого раствора. Этот гидробур представляет собой отрезок водопроводной трубы, на конце которой укреплена насадка с автоматически действующим затвором. К трубе присоединяется шланг, по которому от любой машины, имеющей насос и емкость (опрыскиватели, автоцистерны и т. д.), или трубопровода под напором подается вода. Принцип его работы основан не на вращении рабочего органа и не на разрушении грунта, а на его размывании. При включении гидробура вода сама открывает затвор и размывает почву. Рабочий слегка нажимает на трубу, и гидробур очень легко, за несколько секунд, углубляется в почву на 60-100 см. Размытые при этом частицы вмываются водой в поры грунта.


И вот при помощи этого несложного орудия однажды было спасено несколько миллионов кустов виноградника от гибели.

Было это так. Летом прошлого года в Крыму все задыхалось от засухи. Молодые виноградники на площади более 15 тыс. гектаров находились на грани гибели, так как влаги, доступной для растений, в почве уже не было. Листья растений начали увядать и желтеть. Для спасения их при поверхностном поливе нужно было на каждый гектар вылить минимум по 500- 800 куб. м воды. Но где ее взять в таком количестве в иссыхающей степи? Агроном Д. Коваленко, работавший заместителем начальника Крымского областного управления сельского хозяйства, предложил каждому виноградному кусту «выдать» хотя бы 3-4 л воды. Но не выливать ее на поверхность почвы, как это делается обычно, а подать воду прямо к корням. Для этой цели и был применен наш гидробур.

В автоцистернах, опрыскивателях издалека возили воду к виноградным плантациям. К ним присоединяли резиновые шланги гидробуров и подавали скромный паек воды на глубину 60 см. Через несколько дней кусты оживились, расправились листочки. Засуха была побеждена. Удалось не только спасти растения, но они даже стали бурно развиваться. На фоне поблекшей растительности это казалось чудом.

У читателей может возникнуть вопрос: «Неужели оказалось достаточным четырех литров воды, чтобы на все лето напоить большой куст винограда?» Такой же вопрос в свое время возник и у специалистов по орошению земель.

Еще в октябре 1954 года в Одесской области нами были поставлены такие опыты: гидробуром мы подавали в скважины на глубину 60 см по 5 литров воды. После этого было произведено несколько разрезов почвы по оси скважины. В одном из них, сделанном через 12 час, воды оказалось в четыре раза больше, чем было туда налито. А в разрезе, сделанном через 48 час, ее стало еще больше.

Откуда же она взялась?

Ученые давно наблюдали подобное явление в природе. Виднейший советский почвовед и мелиоратор академик А. Н. Костяков писал: «Нужно особо отметить проблему подпочвенного конденсационного орошения, в основе которого должно лежать всяческое усиление процессов конденсации в активных слоях почвы парообразной влаги, содержащейся в атмосферном и почвенном воздухе, и использование этих процессов для увлажнения почвы».

Наш опыт наглядно подтвердил высказывания ученого. Увеличение влаги в разрезанных нами скважинах произошло за счет конденсации водяных паров воздуха в увлажненном, а следовательно, и охлажденном участке почвы. По нашему мнению, такое же явление произошло и при поливе крымских виноградников в исключительно засушливый 1957 год, когда под куст выливалось в среднем не более 4 л воды.

Реки текут над землёй

Точного объяснения всех явлений, связанных с конденсацией паров воздуха в почве, пока еще не дано. К наиболее значительным работам в этой области относятся труды советского профессора В. В. Тугаринова. Ученый на протяжении всей своей жизни занимался вопросом получения воды из воздуха в тех районах, где люди, животные и растения испытывают в ней недостаток. В воздухе проносятся огромные массы влаги. Подсчитано, что в центральной полосе СССР над участком длиной в 100 км при скорости ветра в 5 м/сек за одни сутки проносится столько воды, что из нее можно было бы образовать озеро длиной 10 км, шириной 5 км и глубиной 60 м. А в более жарких. районах на таком пространстве ее будет еще больше. Но она пока остается недосягаемой ни для животных, ни для растений. Только иногда по утрам на почве ничтожное количество ее конденсируется и выпадает в виде росы, которая затем быстро испаряется.

Можно ли заставить пары воды, находящиеся в атмосфере, превращаться в воду?

Профессор Тугаринов доказал, что это вполне осуществимо. В 1936 году на территории Московской сельскохозяйственной академии имени К. А. Тимирязева он построил интересную установку, которая представляла собой небольшой песчаный холм высотой 6 м. В этом холме была устроена вертикальная шахта, соединенная с двумя слегка наклонными трубами. После нескольких лет упорного труда ученый добился блестящего результата: из холма по трубам стала сочиться вода. Ее было тем больше, чем жарче стояла погода. В июле количество воды достигало максимума. Физически это явление, вполне объяснимо. Внутри холма температура ниже, чем у окружающего воздуха. На поверхности более холодных частиц грунта, из которого был сложен холм, происходила конденсация паров - оседала «роса». Вследствие этого давление воздуха внутри холма тоже понижалось, и туда устремлялся наружный теплый воздух. Воды накапливалось еще больше, и она начинала вытекать через трубы. Получается, что воду можно добывать из воздуха. Причем добывать в количествах, достаточных даже для орошения полей. Если бы, например, в условиях Крыма можно было создать конденсирующую поверхность площадью в один квадратный километр, то летом при высокой температуре за 10 час. можно было бы получить около 4 500 куб. м воды. К сожалению, в то время идею ученого не поддержали.


Сейчас описанный выше способ применения средств гидромеханизации позволяет более простым и легким путем претворить в жизнь замыслы профессора Тугаринова. Конденсатором влаги здесь становится сама почва. Гидробур же создает каналы в почве, по которым водяные пары воздуха устремляются в этот естественный кон денсатор. По сути дела, введение воды через гидробур нужно лишь для того, чтобы создать в почве каналы, по которым устремляется горячий воздух, а это вызывает появление своеобразного подпочвенного дождя. Так может решиться проблема, которую в течение длительного времени пытались осуществить многие ученые.

Однако применение гидробура не ограничивается только поливом почвы.

Известно, что знаменитый селекционер Иван Владимирович Мичурин большое внимание уделял глубинной подкормке растений. И это было не случайно. При таком способе подкормки подача питательных веществ происходит непосредственно в зону активной деятельности корневой системы, благодаря чему урожайность увеличивается в 1,5-2 раза. Но, несмотря на исключительную перспективность глубинной подкормки, осуществить ее из-за высокой стоимости работ и низкой производительности труда в широких масштабах не удалось.

С изобретением гидробура эта задача стала разрешимой. Большой опыт применения гидробуров для глубинной подкормки показал, что это очень экономичный способ. Один человек за день может пробурить несколько тысяч скважин с одновременным введением в них необходимого количества подкормочной жидкости. К тому же применение гидробуров позволяет совместить подкормку с глубинным орошением.

У виноградника есть злейший враг- филлоксера. Это очень маленькое насекомое, поражающее корневую систему кустов. Растение заболевает, начинает чахнуть и в конце концов погибает.

Раньше, чтобы избавиться от этой болезни, приходилось зараженные филлоксерой виноградники вырубать и забрасывать их на несколько лет. Гидробур дал возможность проводить борьбу с этим страшным врагом. Ядохимикаты вносятся в почву поярусно на разную глубину. Филлоксера от них погибает, а обреченные на гибель растения полностью выздоравливают и начинают снова обильно плодоносить.

Но и это еще не все. В 1957 году с помощью гидробуров в колхозах и совхозах Одесской области было засажено более 25 тыс. гектаров виноградников. В течение нескольких секунд гидробуром пробуривается скважина определенной глубины. В ней образуется земляная жижа, в которую погружается саженец или черенок. Просто, надежно и высокопроизводительно!

Стоимость посадки виноградников с помощью гидробура обходится в четыре раза дешевле, а посаженные таким образом растения приживаются лучше. Затем они бурно развиваются и раньше начинают давать плоды.

В заключение мы хотим отметить, что гидробур уже сейчас начинает при меняться и на других работах: при осушении болот, при установке опор для виноградников, при борьбе с фильтрацией и засолением почвы. С помощью этого несложного приспособления стало возможным осуществить мечту о превращении пустынных земель Кара-Кумов в цветущие сады. Ведь на орошение возделываемых там хлопчатника, виноградников, субтропических, эфиромасличных и других растений понадобится очень малое количество воды, которую можно относительно легко получить даже в пустыне. Нам кажется, что применение малой гидромеханизации в сельском хозяйстве поможет успешно решить проблему значительного повышения урожайности плодовых садов, хлопчатника, технических культур, да и многих других сельскохозяйственных растений.

Гидробуром пробурили несколько скважин глубиной 0,5 - 0,6 м. В каждую из них подали по 5 л воды под давлением в 2 атмосферы. Через 12 час, сделали раскопки части скважин в виде траншеи глубиной около метра. На фотографии справа показаны разрезы скважин. Количество влаги в зоне увлажнения через 12 час. возросло в четыре раза. Слева дана схема распределения воды в почве. При подаче гидробуром жидкости в почву под большим давлением она устремляется в поры почвы наибольшего диаметра, одновременно расширяя их. В почве создаются многочисленные каналы различных сечений и улучшается ее структурность. Эти каналы создают хорошие условия для движения в почве потоков воздуха и особенно паров воды. Величина конденсации по формуле, выведенной профессором В. В. Тугариновым, зависит от разности упругости паров наружного воздуха и паров у конденсирующей поверхности. Если разность упругости паров воздуха и паров почвы составляет один миллиметр ртутного столба при условии идеального прохождения паров в почве, то за счет конденсации за один час в одном кубическом метре почвы выделится 60 л воды.

В ОБЩУЮ КОПИЛКУ

(журнал "Приусадебное хозяйство")

Много лет я пользуюсь на своем участке простым и удобным гидробуром, о котором я прочел в журнале «Техника молодежи» (№ 7, 1958). Профессор Н. Хомин и инженер Г. Шендриков в статье «Воду можно добывать из воздуха» рассказывали, как при помощи сконструированного ими гидробура за год до публикации статьи в Крыму удалось спасти несколько миллионов виноградных кустов. Молодой виноградник на площади 15 000 гектаров погибал от засухи. Требовалось минимум 500, а то и 800 м3 воды(на 1 га), а ее-то и не было. Но стоило с помощью гидробура подать прямо к корням растений всего по 3-4 л воды, как уже через несколько дней они не только «ожили», но и стали бурно развиваться.

Опыты, проведенные авторами, показали, что если на глубину 60 см подать 5 л воды, то через 12 часов там окажется ее в несколько раз больше, потому что, вводя воду, мы создаем под землей многочисленные каналы, где будет конденсироваться влага.

Под действием воды, подаваемой в гидробур под давлением 1,5-2 атмосферы, он заглубляется на нужную глубину.

При работе с этим приспособлением можно не ограничиваться поливом, а проводить глубинную подкормку растений, вводить для защиты от филлоксеры химикаты, за несколько секунд пробурить скважину, заполняющуюся тут же влагой, для посадки черенка винограда.

Несколько слов о конструкции гидробура (см. рис.).

Он состоит из дюймовой трубы длинной 1м. На конце ввернут наконечник. Поперек другого конца трубы приварена тоже дюймовая трубка длиной 40 см. Один конец ее заварен. Через кран по поперечной трубке подается вода, поступающая в наконечник. Эта трубка служит одновременно и рукояткой.

Наконечник состоит из корпуса и конуса, закрепленного в корпусе фигурной шайбой. Конус, прижатый к корпусу гайкой, перекрывает подач; воды из канала. Она может поступать наружу только по шести канавкам, выфрезерованным в нижней части корпуса, к которому прижимается верхняя часть конуса.

Выходя из наконечника гидробура, вода размывает почву, и он погружается в почву. После перекрытия крана необходимо дать возможность остаткам воды выйти наружу, с тем чтобы при подъеме оставшаяся в гидробуре вода не смыла бы грунт со стенок скважины. Почва и дождевая вода не попадают в скважину, потому что я закрываю ее консервной банкой, предварительно проделав на ее боковой стенке отверстия. Чтобы снабдить, например, двадцатилетнее плодовое дерево влагой, мне достаточно сделать 6-8 «уколов». Нужное давление в гидробуре создано с помощью опрыскивателя харьковского производства с баком емкостью 50 л. После...(к великому сожалению окончания у меня нет) .
[email protected]