Разные органы высших растений выполняют разные функции. Так корни всасывают воду и минеральные вещества, а в листьях происходит фотосинтез, в результате которого образуются органические вещества. Однако все клетки растения нуждаются как в воде, так и в органических веществах. Следовательно, необходима транспортная система, обеспечивающая доставку нужных веществ в одни органы из других. В растениях (в основном имеются в виду покрытосеменные) эту функцию выполняют проводящие ткани .

У древесных растений проводящие ткани входят в состав древесины и луба . По древесине осуществляется восходящий ток : вода и минеральные вещества поднимаются от корней. По лубу осуществляется нисходящий ток : происходит отток органических веществ от листьев. При всем этом понятия «восходящий ток» и «нисходящий ток» не следует понимать совсем буквально, как будто в проводящих тканях вода всегда идет вверх, а органические вещества - вниз. Вещества могут двигаться и в горизонтальном, а иногда в обратном направлении. Например, органические вещества идут вверх к растущим побегам, которые находятся выше запасающих тканей или фотосинтезирующих листьев.

Итак, в растениях движение водного раствора и органических веществ разделены. В состав древесины входят сосуды , а в состав луба - ситовидные трубки .

Сосуды представляют собой цепочку мертвых длинных клеток. По ним передвигается водный раствор от корней. Вода поднимается за счет корневого давления и транспирации (испарения воды листьями). У голосеменных растений и папоротников вместо сосудов есть трахеиды , по которым вода движется медленнее. Отсюда следует, что сосуды имеют более совершенное строение. По-другому сосуды называются трахеями .

Причина, по которой вода в сосудах движется быстрее, чем в трахеидах, заключается в несколько различном их строении. Клетки трахеид имеют множество пор в местах контакта между собой (вверху и внизу). Водный раствор фильтруется через эти поры. Сосуды же по-сути представляют собой полую трубку, их клетки имеют крупные отверстия (перфорации) в местах соединения друг с другом.

Сосуды в своих продольных стенках имеют различные утолщения. Это придает им прочность. Через те места, где утолщений нет, вода транспортируется в горизонтальном направлении. Она поступает в клетки паренхимы и соседние сосуды (сосуда обычно располагаются пучками).

Ситовидные трубки образованы живыми удлиненными клетками. По ним перемещаются органические вещества. Вверху и внизу клетки сосудов соединены друг с другом за счет многочисленных пор. Это соединение похоже на сито, отсюда и название. Получается единая длинная цепочка клеток. Хотя ситовидные трубки - это живые клетки, но у них нет ядра и некоторых других структур и органелл, необходимых для жизнедеятельности. Поэтому у ситовидных трубок есть так называемые клетки-спутницы , которые поддерживают их жизнедеятельность. Спутницы и трубки соединены между собой через специальные поры.

Древесина и луб состоят не только из проводящих тканей. В их состав также входят паренхима и механические ткани. Проводящие ткани вместе с механическими образуют сосудисто-волокнистые пучки . Паренхима часто играет роль запасающей ткани (особенно в древесине).

Древесина по-другому называется ксилемой , а луб - флоэмой .

Проводящая ткань - одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Эволюция проводящих тканей . Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу. При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений. Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи - представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений - до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды - одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их - около 1мм, но может быть 4-7мм (сосна). Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки. Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.


Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки - продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц. Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки. Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.

Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

Структура Расположение Значение
Ксилема – проводящая ткань, состоит из полых трубок – трахеид и сосудов с уплотненной клеточной оболочкой. Древесина (ксилема), внутренняя часть дерева, которая находится ближе к осевой части, у травяных растений – больше в корневой системе, стебле. Восходящее движение воды и минеральных веществ от почвы в корни, листья, соцветия.
Флоэма имеет клетки-спутницы и ситовидные трубки, которые построены из живых клеток. Луб (флоэма) расположен под корой, формируется вследствие деления клеток камбия. Нисходящее движение органических соединений от зеленых, способных к фотосинтезу частей в стебель, корень.

Где находится проводящая ткань у растений

Если сделать поперечный срез дерева, можно увидеть несколько слоев. Вещества перемещаются по двум из них: по древесине и в лубе.

Луб (отвечает за нисходящее движение) находится под корой и при делении инициальных клеток к лубу отходят элементы оказавшиеся снаружи.

Древесина образуется из клеток камбия, что отошли к центральной части дерева и обеспечивает восходящий ток.

Роль проводящей ткани в жизни растения

  1. Перемещение растворенных в воде минеральных солей, поглощенных с почвы в стебель, листья, цветы.
  2. Транспорт энергии от фотосинтезирующих органов растения в иные участки: корневую систему, стебли, плоды.
  3. Равномерное распределение фитогормонов в организме, что способствует гармоничному росту и развитию растения.
  4. Радиальное перемещение веществ в остальные ткани, к примеру, в клетки образовательной ткани, где идет интенсивное деление. Для такого рода транспорта необходимы также передаточные клетки с множественными выступами в мембране.
  5. Проводящие ткани делают растения более гибкими и устойчивыми к внешним воздействиям.
  6. Сосудистая ткань представляет собой единую систему, которая объединяет все органы растений.

Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях.

По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток).

По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веществ по флоэме называют током ассимилятов.

Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.

Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом.Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.

Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов -древесинных волокон (волокон либриформа) и элементов основной ткани - древесинной паренхимы.

Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов –трахеиды и членики сосудов (рис. 3.26).

Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых членикамисосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.

Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).

Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.

Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными иточечно-поровыми (рис. 3.27).

Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов: 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.

Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27) можно рассматривать как морфогенетический, эволюционный ряд.

Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.

В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.

Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.

Флоэма (луб) состоит из проводящих - ситовидных - элементов, сопровождающих клеток (клеток-спутниц), механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы.

В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий –ситовидные поля, через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок.

Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.

У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки (рис. 3.28). Они состоят из многих отдельных клеток – члеников, расположенных один над другим. Ситовидные поля двух соседних члеников образуютситовидную пластинку. Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).

В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.

Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе: 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.

Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.

Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.

В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называютпроводящими пучками. Различают несколько типов проводящих пучков (рис. 3.29).

Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.

В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычныколлатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным. Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).

Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным, илиамфивазальным. Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным, или амфикрибральным. Центроксилемные пучки обычны у папоротников.

Рис. 3.29. Типы проводящих пучков: 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.

5.Механи́ческая , запасающая, воздухоносная ткани. Строение, функции

Механи́ческая ткань - вид ткани в растительном организме, волокна из живых и мёртвых клеток с сильно утолщённой клеточной стенкой, придающие механическую прочность организму. Возникает из верхушечной меристемы, а также в результате деятельности прокамбия и камбия.

Степень развития механических тканей во многом зависит от условий, они почти отсутствуют у растений влажных лесов, у многих прибрежных растений, но зато хорошо развиты у большинства растений засушливых местообитаний.

Механические ткани присутствуют во всех органах растения, но наиболее они развиты по перифериистебля и в центральной части корня.

Выделяют следующие типы механических тканей:

колленхима - эластичная опорная ткань первичной коры молодых стеблей двудольных растений, а также листьев. Состоит из живых клеток с неравномерно утолщёнными неодревесневшими первичными оболочками, вытянутыми вдоль оси органа. Создаёт опору растению.

склеренхима - прочная ткань из быстро отмирающих клеток с одревесневшими и равномерно утолщёнными оболочками. Обеспечивает прочность органов и всего тела растений. Различают два типа склеренхимных клеток:

волокна - длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные илидревесинные волокна).

склереиды - округлые мёртвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни,сливы, абрикоса; они придают мякоти груш характерный крупчатый характер. Встречаются группами в корке хвойных и некоторых лиственных пород, в твердых оболочках семян и плодов. Их клетки круглой формы с толстыми стенками и маленьким ядром.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: а -уголковая колленхима; 6- склеренхима; в -- склереиды из плодов алычи: 1 -цитоплазма, 2 -утолщенная клеточная стенка, 3 - поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна - это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды - это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань, или паренхима, состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1-3 - хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4-запасающая (клетки с зернами крахмала); 5 - воздухоносная, или аэренхима.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2-3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани - воздухоносная паренхима, или аэренхима. Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена.

Аэренхима (или Эренхима) - воздухоносная ткань у растений, построенная из клеток, соединённых между собой так, что между ними остаются крупные заполненные воздухом пустоты (крупные межклетники).

В некоторых руководствах аэренхиму рассматривают как разновидность основной паренхимы.

Построена аэренхима бывает либо из обыкновенных паренхимных клеточек, либо из клеток звёздчатой формы, соединённых друг с другом своими отрогами. Характеризуется наличием межклетников.

Назначение.Встречается такая воздухоносная ткань у водных и болотных растений, и назначение её двоякое. Прежде всего - это вместилище запасов воздуха для потребностей газового обмена. У растений, целиком погружённых в воду, условия газового обмена гораздо менее удобны, чем у наземных растений. Тогда как последние окружены со всех сторон воздухом, водные растения в лучшем случае находят в окружающей среде очень небольшие его запасы; эти запасы поглощаются уже поверхностными клетками, а в глубину толстых органов уже не доходят. Обеспечить себе нормальный газовый обмен растение может при этих условиях двумя путями: либо увеличивая поверхность своих органов при соответствующем уменьшении их массивности, либо собирая внутри своих тканей запасы воздуха. Оба эти способа и наблюдаются в действительности.

Газообмен.С одной стороны, у многих растений подводные листья чрезвычайно сильно рассечены, как, например, у водяного лютика (англ.)русск. (Ranunculus aquatilis), Ouvirandrafene s tralis и проч.

С другой стороны, в случае массивности органов, они представляют собой рыхлую, наполненную воздухом губчатую массу. В течение дня, когда, благодаря процессу ассимиляции, растение выделяет кислорода во много раз больше, чем это необходимо для целей дыхания, выделенный кислород и собирается про запас в крупных межклетниках аэренхимы. В солнечную погоду значительные количества выделенного кислорода не помещаются в межклетниках и выходят наружу сквозь различные случайные отверстия в тканях. С наступлением ночи, когда процесс ассимиляции прекращается, запасённый кислород потребляется постепенно на дыхание клеток, а взамен его в воздухоносные полости аэренхимы выделяется клетками углекислота, чтобы в свою очередь днём пойти на нужды ассимиляции. Так днём и ночью продукты жизнедеятельности растения, благодаря присутствию аэренхимы, не растрачиваются понапрасну, а оставляются про запас, чтобы быть использованными в следующий период деятельности.

Что касается растений болотных, то в особо невыгодных условиях в смысле дыхания находятся у них корни. Под слоем воды, в пропитанной водою почве происходят разного рода процессы брожения и гниения; кислород в самых верхних слоях почвы уже нацело поглощён, дальше создаются уже условия анаэробной жизни, протекающей в отсутствие кислорода. Корни болотных растений не могли бы существовать при таких условиях, не будь у них в распоряжении запаса воздуха в аэренхиме.

Отличие болотных растений и не вполне погружённых водных растений от вполне погружённых состоит в том, что обновление газов внутри аэренхимы происходит не только благодаря жизнедеятельности тканей, а и при помощи диффузии (и термодиффузии); в наземных органах система межклетников открывается наружу массой мельчайших отверстий - устьиц, сквозь которые путем диффузии и уравнивается по составу воздух межклетников с окружающим воздухом. Однако при очень крупных размерах растения такой путь обновления воздуха в аэренхиме корней был бы недостаточно быстр. Соответственно этому, например, у мангровых деревьев, растущих по морским берегам с илистым дном, некоторые разветвления корней растут из ила вверх и выносят в воздух, над поверхностью воды, свои верхушки, поверхность которых пронизана многочисленными отверстиями. Такие «дыхательные корни» имеют целью более быстрое обновление воздуха в аэренхиме питающих корней, разветвленных в бескислородном иле морского дна.

Уменьшение удельного веса

Второй задачей аэренхимы является уменьшение удельного веса растения. Тело растения тяжелее воды; аэренхима играет для растения роль плавательного пузыря; благодаря её присутствию даже тонкие, бедные механическими элементами органы держатся прямо в воде, а не падают в беспорядке на дно. Поддержание органов, главным образом листьев, в положении, благоприятном для жизненных отправлений растения, достигаемое у наземных растений дорогой ценой образования массы механических элементов, достигается здесь у водяных растений просто переполнением аэренхимы воздухом.

Особенно ясно выражена эта вторая задача аэренхимы у плавающих листьев, где запросы дыхания могли бы быть удовлетворены и без помощи аэренхимы. Благодаря обилию межклетных воздухоносных ходов, лист не только плавает на поверхности воды, но и способен выдержать некоторую тяжесть. Особенно славятся этим свойством гигантские листья Victoria regia. Аэренхима, выполняющая роль плавательных пузырей, нередко и образует в самом деле на растении пузыревидные вздутия. Такие пузыри встречаются как у цветковых растений (Eichhornia crassipes, Trianea bogotensis), так и у высших водорослей: Sargassum bacciferum. Fucus vesiculosus и другие виды снабжены прекрасно развитыми плавательными пузырями.

Проводящие ткани являются сложными, так как они состоят из нескольких типов клеток, их структуры, имеют вытянутую (трубчатую) форму, пронизаны многочисленными порами. Наличие отверстий на торцевых (нижних или верхних) участках обеспечивают вертикальный транспорт, а поры на боковых поверхностях способствует поступлению воды в радиальном направлении. К проводящим тканям относят ксилему и флоэму. Они имеются только у папоротникообразных и семенных растений. В проводящей ткани имеются как мёртвые, так и живые клетки
Ксилема (древесина) – это мертвая ткань. Включает в себя основные структурные компоненты (трахеи и трахеиды), древесинную паренхиму и древесинные волокна. Она выполняет в растении как опорную, так и проводящую функцию – по ней движутся вверх по растению вода и минеральные соли.
Трахеиды – мёртвые одиночные клетки веретеновидной формы. Стенки сильно утолщены вследствие отложения лигнина. Особенностью трахеид является наличие в их стенках окаймленных пор. Их концы перекрываются, придавая растению необходимую прочность. Вода движется по пустым просветам трахеид, не встречая на своём пути помех в виде клеточного содержимого; от одной трахеиды к другой она передается через поры.
У покрытосеменных трахеиды развились в сосуды (трахеи) . Это очень длинные трубки, образовавшиеся в результате «состыковки» ряда клеток; остатки торцевых перегородок всё ещё сохраняются в сосудах в виде ободков- перфораций. Размеры сосудов варьируют от нескольких сантиметров до нескольких метров. В первых по времени образования сосудах протоксилемы лигнин накапливается кольцами или по спирали. Это даёт возможность сосуду продолжать растягиваться во время роста. В сосудах метаксилемы лигнин сосредоточен более плотно – это идеальный «водопровод», действующий на большие расстояния.
?1. Чем трахеи отличаются от трахеид? (Ответ в конце статьи)
?2 . Чем трахеиды отличаются от волокон?
?3 . Что общего у флоэмы и ксилемы?
?4. Чем ситовидные трубки отличаются от трахей?
Паренхимные клетки ксилемы образуют своеобразные лучи, соединяющие сердцевину с корой. Они проводят воду в радиальном направлении, запасают питательные вещества. Из других клеток паренхимы развиваются новые сосуды ксилемы. Наконец, древесинные волокна похожи на трахеиды, но в отличии от нее имеют очень малый внутренний просвет, поэтому, не проводят воду, но придают дополнительную прочность. А так же имеют простые поры, а не окаймленные.
Флоэма (луб) — это живая ткань, входящая в состав коры растений, по ней осуществляется нисходящий ток воды с растворенными в ней продуктами ассимиляции. Флоэма образована пятью типами структур: ситовидные трубки, клетки-спутницы, лубяная паренхима, лубяные волокна и склереиды.
Основой этих структур являются ситовидные трубки , образующиеся в результате соединения ряда ситовидных клеток. Их стенки тонкие, целлюлозные, ядра после созревания отмирают, а цитоплазма прижимается к стенкам, освобождая путь для органических веществ. Торцевые стенки клеток ситовидных трубок постепенно покрываются порами и начинают напоминать сито – это ситовидные пластинки. Для обеспечения их жизнедеятельности рядом располагаются клетки-спутницы, их цитоплазма активна, ядра крупные.
?5 . Как вы думаете, почему при созревании ситовидных клеток их ядра отмирают?
ОТВЕТЫ
?1. Трахеи многоклеточные структуры и торцевых стенок не имеют, а трахеиды одноклеточные, имеют торцевые стенки и окаймленные поры.
?2 . Трахеиды окаймленные поры и хорошо выраженный просвет, а у волокон просвет очень маленький и поры простые. Они так же отличаются функциями, трахеиды выполняют транспортную рол (проводящую), а волокна механическую.
?3. Флоэма и ксилема – обе проводящие ткани, их структуры имеют трубчатую форму, в их состав входят клетки паренхимы и механических тканей.
?4. Ситовидные трубки состоят из живых клеток, их стенки целлюлозные, осуществляют нисходящий транспорт органических веществ, а трахеи образованы мертвыми клетками их стенки сильно утолщены лигнином, обеспечивают восходящий транспорт воды и минеральных веществ.
?5. По ситовидным клеткам происходит нисходящий транспорт и ядра, увлекаемые током веществ, закрывали бы значительную часть стовидного поля что приводило бы снижению эффективности процесса.

ПРОВОДЯЩИЕ ТКАНИ

Проводящие ткани транспортируют питательные вещества в двух направлениях. Восходящий (транспирационный) ток жидкости (водные растворы и соли) идет по сосудам и трахеидам ксилемы (рис. 32) от корней вверх по стеблю к листьям и другим органам растения. Нисходящий ток (ассимиляционный) органических веществ осуществляется от листьев по стеблю к подземным органам растения по

специальным ситовидным трубкам флоэмы (рис. 33). Проводящая ткань растения чем-то напоминает кровеносную систему человека, так как имеет осевую и радиальную сильно разветвленную сеть; питательные вещества попадают в каждую клеточку живого растения. В каждом органе растения ксилема и флоэма располагаются рядом и представлены в виде тяжей - проводящих пучков.

Существуют первичные и вторичные проводящие ткани. Первичные дифференцируются из прокамбия и закладываются в молодых органах растения, вторичные проводящие ткани более мощные, формируются из камбия.

Ксилема (древесина) представлена трахеидами и трахеями , или сосудами .

Трахеиды - вытянутые замкнутые клетки с косо срезанными зазубренными концами, в зрелом состоянии представлены мертвыми прозенхимными клетками. Длина клеток в среднем 1 - 4 мм. Сообщение с соседними трахеидами происходит через простые или окаймленные поры. Стенки неравномерно утолщены, по характеру утолщения стенок различают трахеиды кольчатые, спиральные, лестничные, сетчатые и пористые (рис. 34). У пористых трахеид всегда окаймленные поры (рис. 35). Спорофиты всех высших растений имеют трахеиды, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они служат единственными проводящими элементами ксилемы. Трахеиды

выполняют две основные функции: проведение воды и механическое укрепление органа.

Трахеи , или сосуды , - главнейшие водопроводящие элементы ксилемы покрытосеменных растений. Трахеи представляют собой полые трубки, состоящие из отдельных члеников; в перегородках между члениками находятся отверстия - перфорации , благодаря которым осуществляется ток жидкости. Трахеи, как и трахеиды, - это замкнутая система: концы каждой трахеи имеют скошенные поперечные стенки с окаймленными порами. Членики трахей крупнее, чем трахеиды: в поперечнике составляют у разных видов растений от 0,1 - 0,15 до 0,3 - 0,7 мм. Длина трахей от нескольких метров до нескольких десятков метров (у лиан). Трахеи состоят из мертвых клеток, хотя на начальных стадиях формирования они живые. Считают, что трахеи в процессе эволюции возникли из трахеид.

Сосуды и трахеиды помимо первичной оболочки в большинстве имеют вторичные утолщения в виде колец, спиралей, лестниц и т.д. Вторичные утолщения образуются на внутренней стенке сосудов (см. рис. 34). Так, в кольчатом сосуде внутренние утолщения стенок в виде колец, находящихся на расстоянии друг от друга. Кольца расположены поперек сосуда и чуть наклонно. В спиральном сосуде вторичная оболочка наслаивается изнутри клетки в виде спирали; в сетчатом сосуде неутолщенные места оболочки выглядят в виде щелей, напоминающих ячеи сетки; в лестничном сосуде утолщенные места чередуются с неутолщенными, образуя подобие лестницы.

Трахеиды и сосуды - трахеальные элементы - распределяются в ксилеме различным образом: на поперечном срезе сплошными кольцами, образуя кольцесосудистую древесину , или рассеянно более или менее равномерно по всей ксилеме, образуя рассеянно-сосудистую древесину . Вторичная оболочка, как правило, пропитывается лигнином, придавая растению дополнительную прочность, но в то же время ограничивая его рост в длину.

Помимо сосудов и трахеид ксилема включает лучевые элементы , состоящие из клеток, образующих сердцевинные лучи. Сердцевинные лучи состоят из тонкостенных живых паренхимных клеток, по которым питательные вещества оттекают в горизонтальном направлении. В ксилеме присутствуют также живые клетки древесинной паренхимы, которые функционируют в качестве ближнего транспорта, и служат местом хранения запасных веществ. Все элементы ксилемы происходят из камбия.

Флоэма - проводящая ткань, по которой транспортируется глюкоза и другие органические вещества - продукты фотосинтеза от листьев к местам их использования и отложения (к конусам нарастания, клубням, луковицам, корневищам, корням, плодам, семенам и др.). Флоэма также бывает первичная и вторичная.

Первичная флоэма формируется из прокамбия, вторичная (луб) - из камбия. В первичной флоэме отсутствуют сердцевинные лучи и менее мощная система ситовидных элементов, нежели у трахеид. В процессе формирования ситовидной трубки в протопласте клеток - члеников ситовидной трубки появляются слизевые тельца, принимающие участие в образовании слизевого тяжа около ситовидных пластинок (рис. 36). На этом формирование членика ситовидной трубки заканчивается. Функционируют ситовидные трубки у большинства травянистых растений один вегетационный период и до 3-4 лет у древесно-кустарниковых растений. Ситовидные трубки состоят из ряда удлиненных клеток, сообщающихся друг с другом посредством продырявленных перегородок - ситечек . Оболочки функционирующих ситовидных трубок не одревесневают и остаются живыми. Старые клетки закупориваются так называемым мозолистым телом, а потом отмирают и под давлением на них более молодых функционирующих клеток сплющиваются.

К флоэме относится лубяная паренхима , состоящая из тонкостенных клеток, в которых откладываются запасные питательные вещества. По сердцевинным лучам вторичной флоэмы осуществляется также ближняя транспортировка органических питательных веществ - продуктов фотосинтеза.

Проводящие пучки - тяжи, образуемые, как правило, ксилемой и флоэмой. Если к проводящим пучкам примыкают тяжи

механической ткани (чаще склеренхимы), то такие пучки называют сосудисто-волокнистыми . В проводящие пучки могут быть включены и другие ткани - живая паренхима, млечники и др. Проводящие пучки могут быть полными, когда присутствуют и ксилема и флоэма, и неполными, состоящими только из ксилемы (ксилемный, или древесинный, проводящий пучок) или флоэмы (флоэмный, или лубяной, проводящий пучок).

Проводящие пучки первоначально образовались из прокамбия. Выделяют несколько типов проводящих пучков (рис. 37). Часть прокамбия может сохраниться и затем превратиться в камбий, тогда пучок способен к вторичному утолщению. Это открытые пучки (рис. 38). Такие проводящие пучки преобладают у большинства двудольных и голосеменных растений. Растения, имеющие открытые пучки, способны разрастаться в толщину за счет деятельности камбия, причем древесинные участки (рис. 39, 5) примерно в три раза крупнее лубяных участков (рис. 39, 2) . Если при дифференцировке проводящего пучка из прокамбиального тяжа вся образовательная ткань полностью расходуется на формирование постоянных тканей, то пучок называется закрытым (рис. 40). Закрытые

проводящие пучки встречаются в стеблях однодольных растений. Древесина и луб в пучках могут иметь различное взаимное расположение. В связи с этим выделяют несколько типов проводящих пучков: коллатеральные, биколлатеральные (рис. 41), концентрические и радиальные. Коллатеральные , или бокобочные , - пучки, в которых ксилема и флоэма примыкают друг к другу. Биколлатеральные , или двубокобочные , - пучки, в которых к ксилеме примыкают бок о бок два тяжа флоэмы. В концентрических пучках ткань ксилемы полностью окружает ткань флоэмы или наоборот (рис. 42). В первом случае такой пучок называют центрофлоэмным. Центрофлоэмные пучки имеются у стеблей и корневищ некоторых двудольных и однодольных растений (бегония, щавель, ирис, многие осоковые и лилейные). Ими обладают папоротники. Существуют и

промежуточные проводящие пучки между закрытыми коллатеральными и центрофлоэмными. В корнях встречаются радиальные пучки, в которых центральную часть и лучи по радиусам оставляет древесина, причем каждый луч древесины состоит из центральных более крупных сосудов, постепенно уменьшаясь по радиусам (рис. 43). Число лучей у разных растений неодинаково. Между древесинными лучами располагаются лубяные участки. Типы проводящих пучков схематически представлены на рис. 37. Проводящие пучки тянутся вдоль всего растения в виде тяжей, которые начинаются в корнях и проходят вдоль всего растения по стеблю к листьям и другим органам. В листьях они называются жилками. Главная функция их - проведение нисходящего и восходящего токов воды и питательных веществ.