На нашем сайте вы можете увидеть программы для расчета пожарных рисков и категорий, а также иностранные программные комплексы в сфере пожарной безопасности.

Новая программа расчета пожарных рисков для тестирования и отзывов — Скачать с яндекс Диска

1) Калькулятор ОФП

Калькулятор сделан по упрощенной интегральной модели, только для одиночных помещений, высотой не более 6м.Им очень удобно предварительно оценить время блокировки.Например, для учебного класса получилось около 1.5мин, следовательно коридор заблокируется еще медленнее.
2) Калькулятор Эвакуации

3) Калькулятор Риска

Всего по двум-трем формулам которые быстро считаются, можно предварительно оценить значение пожарного риска.

Отредактировали программу расчета категорий
(исправили мелкие ошибки 20.02.15)
Программа для расчета категорий. Простая, удобная, все вещества во вкладке материалы, ничего не надо додумывать, только выбрать вид горючей нагрузки.
… любезно предоставлена господином Бондарь Андрей Николаевич, программа свободна в распространении и нет никаких ограничений. г. Надым Ямало-Ненецкого автономного округа.

Новая программы расчета массы газового огнетушащего вещества (хладон) + теория

программы выполнены в Маткаде и MS Excel

Программное средство для Оценки опасности Shell Shepherd, используются предприятиями нефтегазовой и нефтехимической промышленности, подрядчиками и страховыми компаниями во всем мире. Определяет риск и обеспечивает планирование на случай чрезвычайной ситуации в окружающей среде.
Скачать файл с яндекс диска — http://yadi.sk/d/2zCalRcNDcrQA

Тестирование расчетного модуля программы по определению времени блокировки

В данный момент организация FIRESOFTWARE занимается разработкой программного средства по расчету времени блокировки эвакуационных путей опасными факторами пожара с использованием двухзонной математической модели распространения ОФП по помещениям. Расчет проводится в соответствии с зависимостями, представленными в приложении 6 методики определения расчетных величин пожарного риска…, утвержденной приказом МЧС России №382 от 30.06.2009.
На данный момент закончен расчетный модуль программы, который был опубликован для свободного тестирования.

Программа GreenLine предназначена для расчета времени эвакуации людей при пожаре.

Описание программы:

В этом разделе представлена программа GreenLine , предназначенная для расчета времени эвакуации людей при пожаре. Программа GreenLine предоставляет пользователю возможность производить расчет времени эвакуации людей при пожаре в максимально короткий срок, что достигается следующими особенностями программы:

  • Определение расчетного времени эвакуации из здания в соответствии с методикой расчета, приведенной в ГОСТ 12.1.004-91* «Пожарная безопасность. Общие требования»;
  • Ввод исходных данных для расчета с помощью графического редактора с возможностью использовать в качестве подложки план здания;
  • Автоматический расчет длин участков на основе одного масштабного участка;
  • Формирование отчета, включающего исходные данные по каждому из участков а также подробный ход вычислений.

Программа GreenLine является сетевой, поэтому для осуществления расчета необходим доступ в интернет. Однако для создания схемы эвакуации, ввода данных и проверки их на правильность доступ к интернет не нужен. Вы можете скачать эту программу по следующей ссылке

Посмотреть сертификаты соответствия и купить программу Вы можете на сайте firesoftware.ru

Программа НПБ 107-97 создана для расчета пожарных категорий наружных установок. Она основана на нормах пожарной безопасности 107-97 «Определение категорий наружных установок по пожарной опасности»

Программы Всероссийского Научно-исследовательского Института Противопожарной Обороны представлены программой «Расчет времени эвакуации из зданий и сооружений», а также информационно-поисковой системой «Строительные материалы»

Иностранный программный комплекс «National Fire Code», созданный на основе стандартов американской корпорации NFPA, содержащий нормативные документы NFPA по 1997 год. Официальный сайт организации (на английском языке)

В электронной энциклопедии «Пожарная безопасность образовательного учреждения» представлены и разъяснены необходимые извлечения из законодательно – правовых и нормативно – технических документов, регламентирующих вопросы обеспечения пожарной безопасности различных видов современных образовательных учреждений РФ: дошкольных и общеобразовательных учреждений, ВУЗов и внешкольных учебных заведений (учебно – воспитательных и подготовительно – коррекционных учреждений, учебных корпусов школ – интернатов, музыкальных школ, художественных и артистических студий).

Программа для расчета категорий помещений В1-В4 , созданная в «Аудит Сервис Оптимум», основана на Приложении Б «Методы определения категорий помещений В1-В4» СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности». Мы просим всех, кто пользовался этой программой, высказать свое мнение и пожелание в отзывах!

поставщик программного обеспечения предлагает несколько источников информации, которые помогут работе в программе Fenix+ и работе над расчетами риска в целом.

1. Сайт на котором собрана крайне полезная информация по тематике расчета риска (в том числе тексты методики по расчету риска)
http://www.fireevacuation.ru/

2. Книга Харисова, Фирсова. Про обоснование нормативного значения пож. риска. (много интересной статистической информации)
https://dl.dropboxusercontent.com/u/4808465/book_haris.pdf

3. Обзорная лекция Самошина Д.А. по расчетам риска (один из разработчиков методики)
https://dl.dropboxusercontent.com/u/4808465/fire_risk_lecture_web_october_2010.pdf

4. Методическое руководство пользователя Fenix+ в котором рассмотрен пример выполнения проекта
http://mst.su/fenix/download/User_Task/index.htm

5. Руководство пользователя по программе
http://mst.su/fenix/download/User_Guide/index.htm

6. Видео канал на YouTube с некоторыми уроками, к сожалению данные уроки для старой версии программы, но для освежения информации они подойдут

https://www.youtube.com/user/mstvideostream

Так какую же роль играют АСУ в деятельности органов пожарной охраны и МЧС? Как их можно использовать для улучшения деятельности указанных структур и возможно ли это?

Дальнейшее совершенствование деятельности пожарной охраны невозможно без широкого внедрения АСУ. Это подтверждается зарубежным опытом, а также результатами внедрения АСУ в ряде гарнизонов пожарной охраны в России.

В крупном плане АСУ в пожарной охране представляет собой объединенную в локальную сеть совокупность автоматизированных рабочих мест (АРМ) специалистов, занимающихся вопросами административно-хозяйственной деятельности; пожарной профилактики объектов; оперативного управления силами и средствами тушения пожаров. Каждая из указанных подсистем обладает достаточной автономностью, целесообразно их поэтапное внедрение. Так как наиболее важной подсистемой является подсистема оперативного управления силами и средствами тушения пожаров, то вполне логично внедрение новых информационных технологий в пожарной охране, начиная с автоматизации этих процессов. В дальнейшем мы будем называть данную подсистему АСОУПО – автоматизированная система оперативного управления пожарной охраной. Более подробное рассмотрение данной АСУ начнем с ее части – автоматизированной системы управления пожарной автоматикой.

1. Автоматизированная система управления пожарной автоматикой (асу па)

Состав технологического комплекса противопожарной защиты:

    противопожарная насосная, имеющая в своем составе насосы воды, насосы пены и циркуляционные насосы;

    камера управления задвижками;

    дозирующие системы с резервуарами и трубопроводами пенообразователя;

    резервуары противопожарного запаса воды;

    водозаборные скважины с водопроводом производственным;

    система противопожарного водопровода;

    приборы приемно-контрольные, пожарные извещатели и оповещатели, установленные на технологическом и административно-бытовом оборудовании.

Структура программно-технического комплекса (птк) асу па

АСУ ПА для конкретного технологического объекта компонуется проектным путем из типовых программных и аппаратных модулей. Модули АСУ ПА поставляются в виде конструктивно и функционально законченных изделий:

    пожарные станции управления;

    операторские станции.

При проектировании АСУ ПА применяется широкая номенклатура модулей ввода-вывода, обеспечивающая возможность создания пожарных станций управления различного назначения и производительности (от единиц до нескольких сотен входных/выходных сигналов).

Такая гибкая модульная структура программно-технического комплекса позволяет обеспечить для каждого технологического объекта оптимальный уровень автоматизации процесса пожаротушения, достаточный для своевременного обнаружения очагов пожара и оповещения о них, а также эффективного управления процессом пожаротушения. Аппаратные и программные средства могут наращиваться поэтапно, что позволяет масштабировать систему в соответствии с текущими потребностями производства. Общая производительность системы может достигать нескольких тысяч входных/выходных сигналов.

АСУ ПА имеет открытую архитектуру, обеспечивающую возможность развития системы и расширения ее функций, подключение к системе различных типов контроллеров, интеллектуальных приборов, устройств сопряжения с вышестоящими системами управления.

Функции системы:

    сбор и обработка информации о пожаре, о работе установок пожаротушения при пожаре и в дежурном режиме;

    распознавание и сигнализация аварийных ситуаций, отклонений параметров от заданных пределов, отказов пожарного оборудования;

    отображение информации о пожаре и состоянии установок пожаротушения в виде мнемосхем процесса и стандартных видеограмм с индикацией на них значений параметров и их отклонений;

    регистрация всех контролируемых и расчетных параметров и событий и архивирование их в базе данных;

    формирование отчетной документации;

    изменение в процессе эксплуатации параметров настройки (уставок сигнализации и блокировок);

    автоматическое управление установками пожаротушения;

    автоматическое управление средствами сигнализации;

    дистанционное управление с рабочего места оператора;

    блокировка технологических и вентиляционных систем при пожаре.

АСУ ПА может быть включена в автоматизированную систему безопасности, т.е. являться компонентом более сложной системы, обеспечивающей комплексную безопасность объекта. Обобщенная схема данной системы представлена на рис.1.5.

Работа пожарной сигнализации обеспечивается разнообразными техническими средствами. Она предназначена для выявления наличия возгорания, извещения о возникновении пожара, получения информации и управления автоматическими установками пожаротушения. Пожарная сигнализация бывает пороговой, адресно-опросной, адресно-аналоговой. Адресно-аналоговая система пожарной сигнализации (ААСПС) на сегодняшний день является одним из самых надежных, эффективных и перспективных защитных устройств.

ААСПС представлена на рынке отечественными и зарубежными производителями. Ее устройство считается уникальным, поскольку сочетает в себе новейшие компьютерные и электронные достижения. Как целостный комплекс, такая система является довольно сложным механизмом. В практике также применяется адресная пожарная сигнализация.

Что представляет собой адресная система противопожарной сигнализации?

Адресная система пожарной сигнализации (АСПС) применяется на различных объектах. Как уже говорилось, эта система уступает по техническим параметрам ААСПС, однако, она также является достаточно распространенной, так как имеет весьма приемлемую цену. В состав адресной защитной линии входит множество датчиков, которые постоянно передают информацию на единый пульт управления. Благодаря централизованному управлению можно осуществлять непрерывный контроль над работой подсистемы в целом.

При этом в случае неисправности какой-либо части механизма, целостная защитная линия продолжит бесперебойную работу.

Адресные системы пожарной сигнализации работают по очень простому принципу. Установленные датчики незамедлительно реагируют на задымление или резкое повышение температуры. Информация от датчиков поступает непосредственно на пульт управления. Лицо, ответственное за пожарную безопасность и имеющее доступ к центральному пульту, после получения такой информации обязано предпринять необходимые действия по пожаротушению. На сегодняшний день потребители все же отдают предпочтение более гибкой, надежной и многофункциональной адресно-аналоговой системе.

На картинке – компонента адресно-аналоговой системы пожарной сигнализации

Компонентный состав и функциональные особенности адресно-аналоговых устройств

Составными компонентами любой системы являются:

  • Устройства обнаружения пожара (сенсорные датчики и оповещатели);
  • Контрольно-приемные приборы;
  • Периферийное оборудование;
  • Устройство централизованного управления системой (компьютер, оснащенный специализированным программным обеспечением или пульт управления).

Противопожарные защитные системы обладают следующим набором функций:

  • Выявление очага возгорания;
  • Передача и обработка необходимой информации;
  • Запись полученной информации в протокол;
  • Создание и управление тревожными сигналами;
  • Управление механизмами автоматического пожаротушения и дымоудаления.

Технические параметры систем пожарной сигнализации

Адресная аналоговая система оповещения о пожаре позволяет определить точное место возникновения очага возгорания. ААСПС характеризуют технические параметры, которые определяют принцип и качество работы оборудования:

  • Адресная емкость системы (возможность установки до 10000 датчиков и до 2000 модулей, что позволяет организовать сетевую работу);
  • Возможность сетевой работы (взаимодействие до 500 приборов для осуществления обмена информацией в сети);
  • Информационное содержание прибора (возможность организации до 1500 адресно-аналоговых колец, подключенных к одному прибору);
  • Наличие строки уравнений (возможность создания до 1000 строковых уравнений для управления реле);
  • Разнообразие структуры шлейфов (кольцевые, радиальные, древовидные);
  • Множество типов модулей и датчиков в системе (20-30);
  • Краткость и информативность системы на пользовательском уровне;
  • Возможность интеграции с однотипными системами;
  • Наличие дополнительных источников питания (встроенных аккумуляторов);
  • Возможность интеграции ААСПС со СКУД.

Какие преимущества адресно-аналоговых систем?

ААСПС включает в себя новейшие компьютерные, электронные и технические достижения. Установка подобной системы защиты имеет ряд преимуществ:

  • Отсутствие необходимости в установке различных тепловых устройств извещения с указанием предельных порогов температур;
  • Установленные механизмы извещения о пожаре имеют высокую работоспособность в тяжелых условиях;
  • Приемно-контрольный прибор обладает многофункциональностью и не требует установки дополнительных механизмов извещения;
  • Быстрое выявление очага возгорания в связи с применением нескольких параллельных алгоритмов действий по обработке поступающей информации;
  • Благодаря многозадачности контроллера приемно-контрольного оборудования, выполняется быстрый запуск автоматических механизмов пожаротушения;
  • Наличие уменьшенного количества электронных элементов;
  • В оборудовании применяются микроконтроллеры, которые отличаются высокой надежностью;
  • Простота проектирования, прошивки и запуска защитных линий в работу;
  • Завышенная цена оборудования достаточно быстро окупается в процессе эксплуатации.

Адресно-аналоговые подсистемы полностью совмещаются с компьютерными технологиями и оснащены выходом во всемирную сеть. В случае возникновения сбоя, с помощью сети информация может передаваться на центральный пульт охраны или МЧС. Содержание системы и ее техническое обслуживание зависит только от человеческого фактора. В связи с кладкой медных кабелей по линии и их специализированной изоляцией, обеспечивается высокая работоспособность, даже при температуре 100º. Это означает, что при возникновении пожара, система сможет работать и передавать данные, а также управлять процессом автоматического пожаротушения.

На видео – больше информации об адресно-аналоговой системе сигнализации:

Системы безопасности Bolid

Наличие ОПС Болид на любом объекте позволяет получать, обрабатывать и передавать информацию о пожаре. Эта защитная линия представлена сложнейшим техническим комплексом, который позволяет своевременно определить возникновение пожара. Данное устройство объединяет в себе следующие составляющие элементы:

  • Коммуникационные линии;
  • Инженерные объекты;
  • Подсистемы безопасности (с их помощью можно осуществлять контроль доступом, управлять подсистемами оповещения, пожаротушения и т. п.).

Сигнализации Болид бывают аналоговыми, адресно-пороговыми, адресно-аналоговыми и комбинированными. Функциональность такой защитной линии обеспечивается исключительно техническим оборудованием. Пожарные датчики и устройства извещения позволяют выявить возгорание. Тревожные кнопки и датчики охраны определяют незаконный доступ на объект. Периферийные устройства наряду с приемно-контрольными механизмами обеспечивают регистрацию и обработку информации.

Каждое устройство призвано выполнять индивидуальные задачи.

ОПС Болид позволяет давать команды по управлению установками автоматического пожаротушения, линий оповещения и иного оборудования. Помимо основного набора функций, ОПС имеет дополнительные, например: управление и контроль над инженерными и коммуникационными подсистемами. К охранно-пожарной сигнализации предъявляются следующие требования:

  • Круглосуточное наблюдение за охраняемым периметром;
  • Выявление точного места незаконного доступа на охраняемый объект;
  • Предоставление простой и понятной информации о наличии возгорания или незаконного доступа;
  • Выявление очага возгорания в кратчайший промежуток времени;
  • Указание точного месторасположения очага возгорания;
  • Точная работа целостного комплекса и отсутствие возможности ложного срабатывания;
  • Контролирование исправности и непрерывной работы датчиков;
  • Отслеживание попыток преднамеренного выведения ОПС из строя.

Болид могут легко интегрироваться и в составе целостного комплекса выполнять ряд задач, в том числе.

Информационная система пожарной безопасности - ИСПБ - единый инструмент прогнозирования, планирования и контроля выполнения всех регламентных мероприятий по поддержанию противопожарной безопасности объекта.

    Система предназначена для:

  • специалистов предприятий по ПБ , где технологический процесс обуславливает наличие факторов взрыво-, пожаро-, радиационной и химической опасности;
  • начальников пожарных расчетов .

Преимущества применения ИСПБ

Разработка ИСПБ предполагает создание информационной 3D модели (3D ИМ), включающей в себя помещения, системы и элементы, необходимые для целей анализа пожарной опасности. Использование 3D ИМ позволяет проанализировать пространственную взаимосвязь между всеми элементами объекта в совокупности с данными и обеспечивает реализацию функций системы.

Решение прикладных задач с помощью ИСПБ

Регулярный мониторинг текущей ситуации на подконтрольных объектах

Наблюдение за эксплуатацией промышленных объектов реализуется с помощью технологии автоматизированной идентификации объектов . Объекты мониторинга маркируются уникальными идентификаторами (штрих-, QR-кодами или радиометками), которые считываются эксплуатационным персоналом с помощью мобильных устройств.

Мобильный клиент позволяет фиксировать контролируемые при обходе параметры (например, сроки проверки). Вносимые в систему данные автоматически попадают в единое электронное хранилище. На их основе проводится планирование последующих обходов, проверок субподрядными организациями и других регламентных мероприятий.

Маркировка огнетушителей QR-кодом

Маркировка огнетушителей QR-кодом

Технология автоматизированной идентификации помогает:

  • снизить возможности возникновения следующих рисков:
    • невыполнение регламентных работ и осмотров оборудования, фальсификации отчетов - для считывания штрих-кода сотрудник обязан подойти к объекту мониторинга и считать код, и только после этого система позволит ему внести данные;
    • потери информации - благодаря ее сбору сразу в электронном виде непосредственно на месте мониторинга;
    • недостаточное качество выполнения работ - благодаря обязательной регистрации исполнителя в системе и персональной ответственности каждого сотрудника за произведенное им действие и мгновенному доведению данных до сведения руководителя через 3D ИМ.
  • обеспечить удобный доступ к эксплуатационной информации благодаря:
    • организации оперативного получения данных в любой точке предприятия через мобильные устройства;
    • систематизации и хранению эксплуатационных данных в электронном виде в единой информационной системе;
    • визуализации данных на 3D моделях, ГИС , технологических схемах.
  • сократить время и повысить удобство выполнения регламентных мероприятий. Мобильные устройства позволяют хранить и получать информацию как о текущем состоянии объектов предприятия, так и об истории изменения контролируемых параметров, а также другие данные, необходимые эксплуатационному персоналу, вплоть до маршрутных карт, инструкций и изображений объектов.
  • своевременно устранять неисправности, благодаря чему предотвращать пожары, за счет визуализации состояния объектов в информационной системе и сигнализации в случае возникновения критических ситуаций.

Подготовка планов ликвидации пожаров за счет моделирования их развития и визуализации в динамике

При возникновении пожара необходимо действовать как можно быстрее. Именно поэтому важно заблаговременно смоделировать варианты его протекания и составить подробные планы действий для всех участников.

ИСПБ дает возможность проанализировать распространение пожара в зависимости от места возникновения и заданного времени и визуализировать ситуацию на 3D моделях, ГИС, технологических схемах. Такая имитационная модель позволяет составить и проанализировать разные маршруты распространения пожара. При расчете учитывается пожарная нагрузка (либо условное время ее выгорания) и огнестойкость строительных конструкций. Результаты этого расчета являются основой для дальнейшего проектирования пожарных зон.

При интеграции с расчетными системами становится возможным моделирование вариантов развития аварийных ситуаций с учетом различных факторов: метеоусловий, конфигурации зданий и сооружений и т. д.

Возгорание в помещении

Возгорание в помещении

Смоделированная ситуация спустя 30 минут

Смоделированная ситуация
спустя 30 минут

Отработка действий при пожаре на 3D тренажерах

3D тренажер представляет собой программный комплекс для изучения специалистами информации о конфигурации предприятия , расположении пожарных выходов, гидрантов и порядка необходимых действий при пожаре. При этом обучаемый пользуется сценариями ситуаций, средствами визуализации и управления ими. 3D представление также может быть дополнено другими вариантами визуализации - фото, видео, сферическими панорамами объектов и так далее.

Виртуальные тренажеры часто являются единственным приемлемым средством обучения, так как ошибки при обучении на реальных объектах могут привести к тяжелым последствиям, а устранение их последствий - к большим финансовым затратам.

Оперативное информирование пожарных расчетов о ситуации

Визуализация маршрута эвакуации на 3D модели

ИСПБ позволяет оперативно предоставить визуализированную на 3D моделях, ГИС и технологических схемах информацию о месте пожара, возможных маршрутах подъезда пожарной техники и о расположении пожарных гидрантов, а также показывает маршруты продвижения пожарных расчетов до очага возгорания.

Возможность быстро оценить ситуацию на 3D модели способствует скорейшей ликвидации аварий и минимизации их последствий, обеспечивает быструю и слаженную работу пожарной бригады.

Базовые функциональные возможности ИСПБ

  • Сбор и хранение информации в электронном виде о:
    • зданиях и сооружениях
    • помещениях и их характеристиках
    • состоянии путей эвакуации
    • конструкциях и элементах, включая их огнестойкость
    • пожарной нагрузке
    • внутренних и наружных системах пожарной безопасности, их элементах и характеристиках
    • стационарных и первичных средствах пожаротушения
    • нарушениях правил ПБ
  • Анализ:
    • учтенных данных
    • пожарной опасности промышленной площадки
    • допустимости конфигурации пожарных зон
  • Планирование:
    • мероприятий ПБ
    • проверок надзорными органами
    • других регламентных мероприятий
  • Визуализация на 3D модели/ГИС/технологических схемах:
    • огнестойкости конструкций и огнезащиты
    • распространения пожара
    • маршрутов эвакуации персонала и движения пожарного расчета
  • Интеграция:
    • ИСПБ легко интегрируется с любыми информационными системами, уже работающими на предприятии

Реализация

Пример реализации доступа к данным посредством 3D модели в НЕОСИНТЕЗ

ИСПБ реализуется на российской PLM/PDM-платформе НЕОСИНТЕЗ *, обеспечивающей управление инженерными данными на всех стадиях жизненного цикла (ЖЦ) инфраструктурного объекта. В основе системы лежит датацентрический подход, позволяющий сформировать в НЕОСИНТЕЗ полную информационную модель промышленного объекта. ИМ объединяет в едином актуальном и структурированном электронном хранилище всю информацию, необходимую для управления объектом.

Заказчик: Ленинградская АЭС (Госкорпорация «Росатом»)

Стоимость

Основные факторы, влияющие на стоимость внедрения ИСПБ:

  • Масштаб объекта: количество типов элементов и самих элементов 3D ИМ («НЕОЛАНТ» осуществляет оценку на основе имеющихся ПСД и 3D моделей).
  • Качество и полнота ПСД, на основе которой необходимо разработать 3D ИМ.
  • Наличие и качество 3D моделей, влияющее на необходимость дополнительных работ по подготовке 3D моделей с целью объединения в единую 3D ИМ.
  • Необходимость создания исполнительной 3D ИМ или достаточно 3D ИМ «как спроектировано».
  • Внесение исходных данных: заказчиком самостоятельно или силами исполнителя.
  • Наличие требований по использованию конкретных технологий ИМ.
  • Реализация дополнительных прикладных функций.

В статье рассмотрен современный уровень информационно-коммуникационного обеспечения подразделений федеральной противопожарной службы МЧС России, а также дана краткая характеристика последних разработок в области автоматизации и информатизации деятельности пожарной охраны

Александр

Начальник научно-исследовательского центра моделирования чрезвычайных ситуаций на критически важных объектах (Ситуационный центр) (НИЦ МЧС КВО (СЦ)) ФГБУ ВНИИПО МЧС России


Присадков

Главный научный сотрудник отдела моделирования пожаров и нестандартного проектирования научно-исследовательского центра автоматических установок обнаружения и тушения пожаров (НИЦ ППиПЧСП) ФГБУ ВНИИПО МЧС России, д.т.н., профессор

Современная обстановка в области защиты населения и территорий от чрезвычайных ситуаций и угроз природного и техногенного характера характеризуется высокой степенью сосредоточения угроз, интенсивностью динамики развития и изменений в структуре как объектов, создающих угрозы, так и объектов, призванных для ликвидации таких угроз. В этих условиях информационно-коммуникационное обеспечение является одной из основных составляющих эффективной системы управления и взаимодействия сил и средств, вовлекаемых в процесс ликвидации угроз и последствий пожаров и чрезвычайных ситуаций (ЧС).

Внедрение современных технологий информационного обеспечения

В настоящее время информационно-коммуникационные технологии (ИКТ) открывают широкие перспективы для эффективного решения различных задач во всех областях науки, техники, государственного управления, оборонной сферы. Чрезвычайно развиты сети обмена информацией, средства накопления, хранения и обработки информации, средства визуального представления различной информации, средства математического моделирования чрезвычайных ситуаций.

Практически все современные ИКТ находят применение в МЧС России для создания условий безопасного функционирования объектов общественного и промышленного назначения, обеспечения пожарной безопасности, повышения эффективности мероприятий по ликвидации последствий пожаров и ЧС 1 .

Одним из характерных направлений работы МЧС России уже на протяжении ряда лет является внедрение передовых технологий информационного обеспечения и автоматизации деятельности подразделений Федеральной противопожарной службы. В рамках научно-исследовательских и опытно-конструкторских работ создаются как новые компьютерные программы и программно-аппаратные комплексы, так и масштабные автоматизированные системы по управлению пожарно-спасательными формированиями, прогнозированию опасных факторов пожаров и ЧС, мониторингу потенциально опасных и критически важных объектов. Как правило, в этих разработках воплощаются современные технические принципы обработки и обмена информацией, обеспечения качественной связи, построения целостных широкомасштабных систем управления.


Необходимость использования этих средств многократно подтверждена практикой тушения пожаров и ликвидации последствий чрезвычайных ситуаций. Использование средств автоматизации в конечном счете снижает риск травматизма и гибели людей, уровень материальных потерь за счет оптимизации процесса управления деятельностью пожарно-спасательных формирований на всех стадиях, начиная от процесса заполнения карточки вызова и заканчивая сложными алгоритмами межрегионального взаимодействия сил и средств пожарной охраны.

Развитие ИКТ в пожарной охране

У истоков разработки и внедрения компьютерных средств автоматизации в пожарную охрану стоял коллектив ВНИИПО МВД СССР. Уже с конца 70-х годов ХХ века в институте создавались программы для моделирования пожаров, алгоритмы оценки эффективности деятельности пожарной охраны, методики и алгоритмы оценки состояния пожарной безопасности как для отдельных объектов народного хозяйства, так и для целых регионов нашей страны. Эти программы и алгоритмы реализовывались в вычислительном центре института, а некоторые из них, наиболее масштабные и ресурсоемкие, – в вычислительном центре АН СССР. Результаты вычислений использовались для научного обоснования методических рекомендаций по противопожарной защите объектов, планирования деятельности пожарной охраны, изучения физических процессов, протекающих при пожарах.

По мере развития вычислительной техники появилась возможность использования ее для решения локальных задач в области пожарной безопасности. Одной из первых разработок института в этой области является имитационная модель процессов возникновения, развития и тушения пожаров, созданная в 1985 г. Эта разработка представляла собой программу, написанную на устаревшем на сегодняшний день языке ПЛ/1, и была предназначена для ЭВМ серии ЕС – одной из первых серий отечественных ЭВМ. Программа решала задачи анализа эффективности функционирования системы предотвращения пожаров и противопожарной защиты, обоснования вариантов обеспечения пожарной безопасности.

Наиболее заметной тенденцией в области автоматизации и информатизации деятельности пожарной охраны на сегодняшний день является создание крупных автоматизированных систем мониторинга состояния объектов и управления силами и средствами пожарной охраны. Автоматизация процессов мониторинга и управления в пожарной охране уверенно показывает свою эффективность, начиная с внедрения первых автоматизированных рабочих мест диспетчеров пожарных частей. Разработка отдельных программ и программных систем на базе ПЭВМ для использования непосредственно в органах управления и подразделениях пожарной охраны началась в 1987 г. и с тех пор не исчерпала актуальности и перспектив своего развития. Надлежащий технический уровень программных продуктов достигается за счет тщательной проработки математических моделей деятельности подразделений пожарной охраны, обобщения практики работы, последующего их объединения и реализации в виде программно-аппаратных комплексов и программно-технических средств информатизации 2 .

Практика работы пожарной охраны показывает необходимость наращивания объемов информационного обеспечения, расширения масштабов внедрения автоматизированных систем до звеньев РСЧС начального уровня, возможно, более широкого внедрения ГИС-технологий. Это объясняется усложнением инфраструктуры городов, а также отдельных гражданских и промышленных объектов, появлением новых веществ, материалов и технологий. Работа пожарно-спасательных подразделений при этом сопряжена с обработкой большого количества информации, необходимой для правильной оценки возможного развития пожаров и оптимального выбора сил и средств для его ликвидации.

На современном этапе развитие информационно-коммуникационных технологий пожарной охраны получило следующие основные направления:

  1. Обеспечение защищенности критически важных для национальной безопасности Российской Федерации объектов (КВО).
  2. Мониторинг противопожарного состояния объектов с массовым пребыванием людей.
  3. Автоматизация поддержки принятия решений и управления пожарно-спасательными формированиями с применением геоинформационных технологий.

Защита КВО и объектов с массовым пребыванием людей

Защищенность КВО является одним из приоритетных направлений в деятельности МЧС России. Помимо разработки технических средств предупреждения и ликвидации пожаров и ЧС на КВО и организационно-методических положений значительная роль в обеспечении защищенности КВО отводится современным информационным и компьютерным технологиям. В настоящее время разрабатываются перспективные программно-аппаратные комплексы управления силами и средствами пожарно-спасательных подразделений, мониторинга уровня готовности и качественного состояния систем противопожарной защиты объектов, сбора и обработки данных об инфраструктурах объектов и характерах производств.

Необходимость выработки систематизированного подхода к вопросам мониторинга систем обеспечения противопожарной защиты объектов с массовым пребыванием людей обусловлена возрастающей сложностью и расширяющейся функциональностью эксплуатируемых и строящихся зданий и сооружений, значительным увеличением количества людей, одновременно находящихся на территории объектов.


Экономические механизмы заставляют собственников изыскивать все новые и новые формы привлечения людей в различные учреждения, делать все возможное для увеличения времени пребывания граждан на территориях своих объектов. Естественно, при таком положении дел значительно возрастает пожарный риск. Обязанность МЧС РФ – принятие мер к минимизации этого риска.

Практика работы в сфере защиты объектов с массовым пребыванием людей показывает, что их интегрированные системы безопасности сами нуждаются в контроле, внешнем управлении и защите. Безусловно, производители систем безопасности обеспечивают контроль их работоспособности. Вместе с тем, как известно, крупный пожар легче предотвратить, чем ликвидировать. МЧС РФ, несмотря ни на какие гарантии со стороны производителей средств обеспечения безопасности, не снимает с себя обязанности обеспечения минимального пожарного риска.

Свое воплощение современные информационно-коммуникационные технологии находили в конкретных разработках, выполняемых, в частности, в рамках Федеральной целевой программы "Пожарная безопасность в Российской Федерации на период до 2012 г.", и продолжают реализовываться в рамках Федеральной целевой программы "Пожарная безопасность в Российской Федерации на период до 2017 г." Научно-исследовательские организации МЧС России занимаются изучением эффективности информационно-коммуникационных технологий. По результатам этой работы принимаются решения относительно наделения разрабатываемых программно-технических средств теми или иными возможностями.

Наиболее характерным для этих разработок свойством является широкое применение геоинформационных технологий и технологий сбора и обработки информации от удаленных датчиков с использованием технологий сетевых коммуникаций. Важным и необходимым условием применения этих технологий является их доступность и надежность, многократно проверенная в различных системах, используемых в МЧС России и других министерствах и ведомствах.


Еще одним важным свойством разрабатываемых программно-технических средств является их модульная структура, которая обеспечивает их универсальность и возможность быстрой адаптации к применению на любых уровнях единой системы РСЧС и при необходимости в смежных областях. Модульность систем реализуется за счет применения независимых аппаратных устройств различного назначения, имеющих интерфейсы единого стандарта, применения технологии взаимодействия программных модулей через программные стандартные интерфейсы, применение современных серверов баз данных. Так, представленные ниже разработки обладают всеми необходимыми возможностями для использованиях их в системе "112". Учитывая их изначальное предназначение, потребуется проведение работ по наделению их соответствующими новым задачам функциями, что может быть проведено в короткий срок. Данные системы уже проходят опытную эксплуатацию, которая показывает положительные результаты, что еще более приближает их к внедрению в новых сферах, таких как система "112".

Современные технологии мониторинга

`В ФГБУ ВНИИПО МЧС России создана техническая возможность интеграции большого количества информационных ресурсов в едином центре управления, что является оптимальным решением с точки зрения оперативности анализа обстановки и принятия решений в ходе ликвидации пожаров и ЧС. Она реализуется программно-аппаратными комплексами "Стрелец-Мониторинг", "Радиоволна", АГИСППРиОУ3. Указанные технические комплексы служат для своевременного оповещения людей о пожаре, автоматизированной передачи информации о параметрах возгорания в диспетчерские службы пожарной охраны и аварийно-спасательных сил, управления эвакуацией людей, оперативного управления действиями пожарно- и аварийно-спасательных формирований.

Программно-аппаратный комплекс "Стрелец-Мониторинг" с 2010 г. успешно внедряется в подразделениях МЧС России.

ПАК "Стрелец-Мониторинг" предназначен для:

  • применения в автоматизированной системе мониторинга, обработки и передачи данных о параметрах возгорания, угрозах и рисках развития крупных пожаров в сложных зданиях и сооружениях с массовым пребыванием людей;
  • обеспечения автоматизированного вызова сил пожаротушения;
  • обеспечения сил пожаротушения и системы управления эвакуацией актуальной информацией о ситуации на объекте, в т.ч. отображения распространения пожара на плане объекта с точностью до извещателя с целью своевременного определения правильных путей эвакуации;
  • взаимодействия с внешними автоматизированными системами;
  • раннего обнаружения неисправностей аппаратуры пожарной сигнализации на объекте с целью своевременного принятия мер по их ликвидации.

Комплекс позволяет контролировать и управлять работой различных систем пожарной сигнализации и автоматического пожаротушения из единого центра управления, организовывать работу многоуровневых диспетчерских служб.

Новым этапом в развитии технологии мониторинга является создание системы "Радиоволна". Данная система предназначена для организации сбора по радиоканалу информации с датчиков пожарной сигнализации и датчиков технологических процессов, которые благодаря применению технологии маршрутизации и ретрансляции сигналов могут быть размещены на значительном удалении от центра управления. В настоящее время идет опытная эксплуатация данной системы.

Современные технологии управления пожарно-спасательными формированиями основаны на точном позиционировании местоположения личного состава и техники и привязке отображаемой информации к карте местности. Эти задачи решаются автоматизированной геоинформационной системой поддержки принятия решений и оперативного управления АГИСППРиОУ.

Система обеспечивает отображение карт и планов местности и объектов с привязкой к географическим координатам, наложение на них информации о местонахождении людей и техники и другой графической информации, использующейся в работе органов управления различного уровня, оперативно-диспетчерских служб и штабов по ликвидации пожаров и ЧС. В состав системы входят расчетные модули, с помощью которых осуществляется прогнозирование распространения опасных факторов пожаров и техногенных ЧС с отображением результатов расчетов на карте местности. Система проходит опытную эксплуатацию.

Заключение

Характерные показатели деятельности пожарной охраны – это время реагирования подразделений пожарной охраны на вызовы и время локализации и ликвидации пожаров, риск травматизма и гибели людей при пожарах, материальные потери от пожаров. Эксплуатация комплекса "Стрелец-Мониторинг" позволяет сделать вывод о появлении тенденции к снижению вышеуказанных показателей. То же самое наблюдается и в зонах опытной эксплуатации других систем – "Радиоволна" и АГИСППРиОУ. ВНИИПО МЧС России принимает активное участие в формировании Федеральной целевой программы "Пожарная безопасность в РФ на период до 2017 г.", в том числе в части применения информационных технологий в пожарной охране. В частности, предложено провести разработку программно-аппаратного комплекса автоматизации и связи, который позволит распространить действие комплексных информационных систем МЧС России до звеньев РСЧС начального уровня и подразделений, действующих в отрыве от мест дислокации. Комплекс предполагается оснастить современными средствами связи, навигации, вычислительной техникой, средствами мониторинга химико-биологической обстановки на месте пожара или ЧС при сохранении у него массо-габаритных параметров носимого комплекса.

___________________________________________
1 Постановление Правительства Российской Федерации от 30 декабря 2003 г. № 794 "О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций".
2 Копылов Н.П., Хасанов И.Р., Варламкин А.В. Новое направление в работе ФГУ ВНИИПО – поддержка управленческих решений и моделирование чрезвычайных ситуаций на критически важных объектах федерального уровня // Пожарная безопасность. – 2007. – № 2. С. 9–22.