Никель широко применяется в машиностроении и приборостроении, а также в разных отраслях. В пищевой промышленности никель заменяет оловянные покрытия, а в области оптики он распространился благодаря процедуре чёрного никелирования металла. Никелем покрывают детали, изготовленные из цветных металлов и стали, для повышения сопротивления изделий механическому износу и защиты от коррозии. Присутствие фосфора в никеле делает пленку по твердости близкой к пленке хрома!

Процедура никелирования

Никелирование представляет собой нанесение на поверхность детали никелевого покрытия, которое обычно имеет толщину от 1 до 50 мкм. Покрытия никелем бывают блестящими или матовыми черными, но не зависимо от этого, обеспечивают надежную защиту металлу в агрессивных средах (кислоты, щелочи) и в условиях повышенной температуры.

Перед процессом никелирования изделие должно быть подготовлено. Его обрабатывают наждачной бумагой для удаления оксидной пленки, протирают щеткой, промывают водой, обезжиривают в горячем содовом растворе и промывают еще раз. Никелевые покрытия способны с течением времени терять свой первичный блеск, поэтому зачастую покрывают слой никеля более устойчивым слоем хрома.

Никель, который нанесен непосредственно на сталь, является катодным покрытием и защищает материал исключительно механическим путем. Несплошность защитного покрытия способствует возникновению коррозионных пар, в которых растворимым электродом выступает именно сталь. В результате этого под покрытием образуется коррозия, разрушающая стальную подложку и провоцирующая отслаивание никелевого покрытия. Для предупреждения этого металл всегда нужно покрывать толстым слоем никеля.

Никелевые покрытия можно наносить на железо, медь, их сплавы, а также на вольфрам, титан и прочие металлы. Нельзя покрывать с помощью химического никелирования такие металлы, как свинец, кадмий, олово, свинец, сурьму и висмут. При никелировании стальных изделий принято наносить подслой меди.

Покрытия никелем используют в разных отраслях промышленности для специальных, защитно-декоративных целей, а также в качестве подслоя. Технологию никелирования используют для восстановления изношенных автозапчастей и деталей машин, покрытия химической аппаратуры, медицинского инструмента, измерительных инструментов, предметов домашнего обихода, деталей, что эксплуатируются с небольшими нагрузками в условии сухого трения или воздействия крепких щелочей.

Виды никелирования

Практике известны две разновидности никелирования - электролитическое и химическое. Последний способ является несколько дороже электролитического, однако способен обеспечить возможность создания равномерного по качеству и толщине покрытия на любых участках поверхности, если выполнено условие доступа к ним раствора.

Электролитическое никелирование

Электролитические покрытия характеризуются некоторой пористостью, зависящей от тщательности подготовки основы и толщины защитного покрытия. Для организации качественной защиты от коррозии требуется полное отсутствие пор, для этого принято предварительно производить меднение детали из металла или наносить многослойное покрытие, что является надежнее однослойного даже при равной толщине.

Для этого нужно приготовить электролит. Возьмите 30 грамм сульфата никеля, 3,5 грамма хлорида никеля и 3 грамма борной кислоты на 100 миллилитров воды, данный электролит налейте в емкость. Для никелирования стали или меди требуются никелевые аноды, которые следует опустить в электролит.

Между никелевыми электродами следует подвесить на проволочке деталь. Проволочки, идущие от никелевых пластинок, необходимо соединить вместе. Детали подключают к отрицательному полюсу источнику тока, а проволочки - к положительному. Затем нужно включить реостат в цепь для регулировки тока и миллиамперметр. Выберите источник постоянного тока, который имеет напряжение не больше 6 В.

Ток необходимо включать приблизительно на двадцать минут. Затем деталь нужно вынуть, промыть и просушить. Изделие покрыто матовым слоем никеля сероватого цвета. Чтобы защитное покрытие приобрело блеск, его необходимо отполировать. Однако при работе помните о существенных недостатках электролитического никелирования в домашних условиях — неравномерности осаждения на рельефной поверхности никеля и невозможности покрытия глубоких и узких отверстий, а также полостей.

Химическое никелирование

Помимо электролитического способа можно использовать еще один, весьма несложный способ для покрытия железа или полированной стали тонким, но прочным слоем никеля. Принято брать 10-процентный раствор хлористого цинка и постепенно добавлять к раствору сернокислого никеля до тех пор, пока жидкость не станет ярко-зеленой. После этого жидкость нужно нагреть до кипения, лучше для этого использовать фарфоровый сосуд.

При этом появляется характерная муть, однако на процесс никелирования деталей она никакого влияния не оказывает. Когда вы доведете жидкость до кипения, следует в неё опустить предмет, который подлежит никелированию. Предварительно очистите деталь и обезжирьте. Изделие должно кипеть в растворе близко часа, время от времени добавляйте дистиллированную воду по мере ее выпаривания.

Если вы заметите во время кипения, что жидкость поменяла цвет из ярко-зеленого на слабо-зеленый, то нужно добавить немного сернокислого никеля для получения первоначального окраса. По истечении указанного времени достаньте изделие из раствора, промойте в воде, в которой распущено немного мела, и тщательно просушите. Сталь или полированное железо, покрытое подобным способом никелирования, это защитное покрытие держит весьма прочно.

В основе процедуры химического никелирования находится реакция восстановления никеля из водного раствора его солей при помощи гипофосфита натрия и прочих химических реактивов. Растворы, которые применяются для химического никелирования, бывают кислыми с уровнем рН 4-6,5 и щелочными с показателем рН выше 6,5.

Кислые растворы целесообразно использовать для покрытия черных металлов, латуни и меди. Щелочные предназначены для нержавеющих сталей. Кислый раствор по сравнению с щелочным дает на полированной детали более гладкую поверхность. Еще одной немаловажной особенностью кислых растворов считается меньшая вероятность саморазряда при превышении порога рабочей температуры. Щелочные растворы гарантируют более надежное сцепление пленки никеля с основным металлом.

Все водные растворы для никелирования своими руками являются универсальными, то есть пригодными для всех металлов. Для химического никелирования берут дистиллированную воду, однако вы можете использовать и конденсат из бытового холодильника. Химические реактивы подойдут чистые - с обозначением на этикетке «Ч».

Последовательность изготовления раствора такова. Все химические реактивы, за исключением гипофосфита натрия, нужно растворить в воде, используя эмалированную посуду. Потом разогрейте раствор до рабочей температуры, растворите гипофосфит натрия и поместите детали в раствор. С помощью одного литра раствора можно отникелировать детали, которые имеют площадь их поверхности до 2 дм2.

Черные покрытия

Никелевые покрытия черного цвета применяются со специальной и декоративной целью. Их защитные свойства являются очень низкими, поэтому их принято наносить на подслой из обычного никеля, цинка или кадмия. Стальные изделия нужно предварительно оцинковать, а медь и латунь — никелировать.

Черное никелевое покрытие является твердым, но хрупким, особенно при значительной толщине. В практике останавливаются на значении толщины в 2 мкм. Никелевая ванна для нанесения подобных покрытий, как правило, содержит большое количество роданида и цинка. В покрытии присутствует близко половины никеля, а остальные 50% составляют сера, азот, цинк и углерод.

Ванны черного никелирования алюминия или стали принято готовить, растворяя в теплой воде все составляющие и фильтруя с помощью фильтровальной бумаги. Если при растворении борной кислоты возникают трудности, то ее отдельно растворяют в воде, что нагрета до 70 градусов по Цельсию. Получение глубокого черного цвета зависит от правильного выбора значения плотности тока.

Ванны никелирования

В мастерских широко применяется ванна, которая состоит из 3 основных компонентов: борной кислоты, сульфата и хлорида. Сульфат никеля является источником ионов никеля. Хлорид значительно влияет на работу анодов из никеля, его концентрация в ванне точно не нормируется. В безхлоридных ваннах совершается сильное пассивирование никеля, после чего содержание в ванне никеля уменьшается, а результатом является снижение выхода по току и падение качества покрытий.

Аноды в присутствии хлоридов растворяются в достаточном количестве для нормального протекания процесса никелирования меди или алюминия. Хлориды увеличивают проводимость ванны и её функционирование при загрязнениях цинком. Борная кислота помогает поддерживать рН на определенном уровне. Эффективность подобного действия зависит в большой степени от концентрации борной кислоты.

В качестве хлорида можно использовать хлорид натрия, цинка или магния. Повсеместно применяются сульфатные ванны Уоттса, которые содержат в качестве добавки электропроводные соли, которые повышают электропроводность ванн и улучшают внешний вид защитных покрытий. Наиболее применяем среди этих солей сульфат магния (близко 30 грамм на литр).

Сульфат никеля принято чаще всего вводить в концентрации порядка 250—350 грамм на литр. В последнее время наметились тенденции к ограничению сульфата никеля - меньше 200 г/л, что помогает заметно снизить потери раствора.

Концентрация борной кислоты составляет 25—40 грамм на литр. Ниже 25 г/л увеличиваются тенденции к быстрому защелачиванию ванны. А превышение допустимого уровня считается неблагоприятным из-за возможной кристаллизации борной кислоты и оседания кристаллов на стенках никелевой ванны и анодах.

Никелевая ванна работает в разном диапазоне температур. Однако технология никелирования в домашних условиях редко применяется при комнатной температуре. От покрытий, которые нанесены в холодных ваннах, часто отслаивается никель, поэтому ванну необходимо нагревать хотя бы до 30 градусов по Цельсию. Плотность тока выбирают экспериментально, чтобы не происходил прижог покрытий.

Натриевая ванна надежно работает в широком диапазоне рН. Раньше поддерживали рН на уровне 5,4—5,8, мотивируя меньшей агрессивностью и высшими кроющими способностями ванны. Однако высокие значения рН провоцируют значительный рост напряжений в никелевом покрытии. Поэтому в большинстве ванн рН составляет 3,5—4,5.

Тонкости никелирования

Сцепление пленки никеля с металлом является сравнительно низким. Данную проблему можно решить с помощью термической обработки пленок никеля. Процедура низкотемпературной диффузии состоит в нагреве отникелированных изделий до температуры 400 градусов по Цельсию и выдержке деталей на протяжении одного часа при этой температуре.

Но помните, что если детали, которые покрыты никелем, были закалены (рыболовные крючки, ножи и пружины), то при температуре 400 градусов они могут отпуститься, теряя твердость - их основное качество. Поэтому низкотемпературную диффузию в подобной ситуации проводят при температуре близко 270-300 градусов с выдержкой до 3 часов. Подобная термообработка способна повышать и твердость покрытия никелем.

Современные ванны никеля требуют специального оборудования для никелирования и перемешивания водного раствора для интенсификации процедуры никелирования и уменьшения риска питтинга - возникновения небольших углублений в покрытии. Перемешивание ванны за собой влечет необходимость создания непрерывной фильтрации для устранения загрязнений.

Перемешивание при помощи подвижной катодной штанги не является настолько эффективным, как использование для этой цели сжатого воздуха, и помимо всего прочего, требует наличия специального ингредиента, который исключает пенообразование.

Снятие никелевого покрытия

Никелевые покрытия на стали принято удалять в ваннах с разбавленной серной кислотой. Добавьте к 20 литрам холодной воды порциями 30 литров концентрированной серной кислоты при постоянном перемешивании. Контролируйте, чтобы температура не превышала 60 градусов по Цельсию. После охлаждения до комнатной температуры ванны ее плотность должна достигать 1,63.

С целью уменьшения риска затравливания материала, из которого выполнена подложка, добавляют в ванну глицерин в количестве 50 грамм на литр. Ванны принято изготовлять из винипласта. Изделия навешивают на средней штанге, которая соединена с плюсом источника тока. Штанги, на которых закреплены свинцовые листы, соединяются с минусом источника тока.

Следите, чтобы температура ванны не превышала 30 градусов, так как горячий раствор на подложку действует агрессивно. Плотность тока должна составлять 4 А/дм2, но допускается изменение напряжения в пределах 5—6 Вольт.

Добавьте через определенное время концентрированную серную кислоту, чтобы поддержать плотность, равной 1,63. Для предупреждения разбавления ванны погружайте изделия в ванну после проведения их предварительной сушки. Контроль процесса особого труда не представляет, потому что плотность тока в момент удаления никеля резко падает.

Таким образом, никелирование является самым популярным гальванотехническим процессом. Покрытие никеля отличается твердостью, большой коррозионной стойкостью, сносной ценой никелирования, хорошими отражательными способностями и удельным электрическим сопротивлением.

Никелирование, которое является достаточно распространенной технологической операцией, выполняют для того, чтобы нанести на поверхность металлического изделия тонкий слой никеля. Толщина такого слоя, величину которого можно регулировать, используя различные приемы, может варьироваться от 0,8 до 55 мкм.

Никелирование используется в качестве защитно-декоративного покрытия, а также для получения подслоя при хромировании

С помощью никелирования металла можно сформировать пленку, обеспечивающую надежную защиту от таких негативных явлений, как окисление, развитие коррозионных процессов, реакции, вызванные взаимодействием с соляной, щелочной и кислотной средами. В частности, очень большое распространение получили никелированные трубы, которые активно используются для производства изделий сантехнического назначения.

Чаще всего никелированию подвергаются:

  • изделия из металла, которые будут эксплуатироваться на открытом воздухе;
  • кузовные детали мото- и автотранспортных средств, в том числе и те, для изготовления которых был использован алюминиевый сплав;
  • оборудование и инструменты, применяемые в общей медицине и стоматологии;
  • изделия из металла, которые длительное время эксплуатируются в воде;
  • ограждающие конструкции, изготовленные из стали или алюминиевых сплавов;
  • изделия из металла, подвергающиеся воздействию сильных химических веществ.

Существует несколько используемых как в производственных, так и в домашних условиях методов никелирования металлических изделий. Наибольший интерес в практическом плане представляют способы никелирования металлических деталей, не требующие применения сложного технологического оборудования и реализуемые в домашних условиях. К таким способам относится электролитическое и химическое никелирование.

Электролитическое никелирование

Суть технологии электролитического никелирования металлических деталей, имеющей и другое название – «гальваническое никелирование», можно рассмотреть на примере того, как выполняется омеднение поверхности изделия из металла. Такую процедуру можно проводить как с применением электролитического раствора, так и без него.

Деталь, которая будет в дальнейшем обрабатываться в электролитическом растворе, подвергается тщательной обработке, для чего с ее поверхности при помощи наждачной бумаги удаляют оксидную пленку. Затем обрабатываемое изделие промывается в теплой воде и обрабатывается содовым раствором, после чего снова промывается водой.

Сам процесс никелирования выполняется в стеклянной емкости, в которую заливается водный раствор (электролит). В составе такого раствора содержится 20% медного купороса и 2% серной кислоты. Обрабатываемую деталь, на поверхность которой необходимо нанести тонкий слой меди, в растворе электролита помещают между двумя анодами из меди. Чтобы запустить процесс омеднения, на медные аноды и обрабатываемую деталь необходимо подать электрический ток, величину которого рассчитывают, исходя из показателя 10–15 мА на один квадратный сантиметр площади детали. Тонкий слой меди на поверхности изделия появляется уже через полчаса его нахождения в растворе электролита, причем такой слой будет тем толще, чем дольше будет протекать процесс.

Нанести медный слой на поверхность изделия можно и по другой технологии. Для этого необходимо изготовить кисточку из меди (можно использовать многожильный провод, предварительно сняв с него изоляционный слой). Такую кисточку, сделанную своими руками, надо зафиксировать на деревянной палочке, которая будет служить ручкой.

Изделие, поверхность которого предварительно зачищают и обезжиривают, помещают в емкость из диэлектрического материала и заливают электролитом, в качестве которого можно использовать насыщенный водный раствор медного купороса. Самодельную кисточку подключают к плюсовому контакту источника электрического тока, а обрабатываемую деталь – к его минусу. После этого приступают к процедуре омеднения. Заключается она в том, что кисточкой, которую предварительно обмакивают в электролит, проводят над поверхностью изделия, не прикасаясь к ней. Наносить покрытие, применяя такую методику, можно в несколько слоев, что позволит сформировать на поверхности изделия слой меди, на котором практически отсутствуют поры.

Электролитическое никелирование выполняется по схожей технологии: при его осуществлении тоже используется раствор электролита. Так же, как и в случае с омеднением, обрабатываемое изделие располагают между двумя анодами, только в данном случае они изготовлены из никеля. Аноды, помещенные в раствор для никелирования, подключаются к плюсовому контакту источника тока, а изделие, подвешенное между ними на металлической проволоке, – к минусовому.

Для осуществления никелирования, в том числе и выполняемого своими руками, используются электролитические растворы двух основных типов:

  • водный раствор, включающий в свой состав сернокислый никель, натрий и магний (14:5:3), 2% борной кислоты, 0,5% поваренной соли;
  • раствор на основе нейтральной воды, содержащий в своем составе 30% сульфата никеля, 4% хлорида никеля, 3% борной кислоты.

Электролит блестящего никелирования с добавкой органических блескообразователей (натриевых солей)

Выравнивающий электролит блестящего никелирования. Подходит для поверхностей с низким классом очистки

Чтобы приготовить электролитический раствор, сухую смесь из вышеуказанных элементов заливают одним литром нейтральной воды и тщательно перемешивают. Если в полученном растворе образовался осадок, от него избавляются. Только после этого раствор можно использовать для выполнения никелирования.

Обработка по данной технологии обычно длится полчаса, при этом используют источник тока с напряжением 5,8–6 В. Результатом является поверхность, покрытая неравномерным матовым цветом серого цвета. Чтобы она стала красивой и блестящей, необходимо ее зачистить и выполнить ее полировку. Следует иметь в виду, что такая технология не может быть использована для деталей, отличающихся высокой шероховатостью поверхности или имеющих узкие и глубокие отверстия. В таких случаях покрытие поверхности металлического изделия слоем никеля следует выполнять по химической технологии, которую также называют чернением.

Суть технологической операции чернения заключается в том, что на поверхность изделия сначала наносится промежуточное покрытие, основой которого может быть цинк или никель, а на верхней части такого покрытия формируется слой черного никеля толщиной не более 2 мкм. Покрытие никелем, выполненное по технологии чернения, смотрится очень красиво и обеспечивает надежную защиту металла от негативного воздействия различных факторов внешней среды.

В отдельных случаях металлическое изделие одновременно подвергают сразу двум технологическим операциям, таким как никелирование и хромирование.

Химическое никелирование

Процедуру химического никелирования изделий из металла выполняют по следующей схеме: обрабатываемую деталь на некоторое время погружают в кипящий раствор, в результате чего на ее поверхности оседают частички никеля. При применении такой технологии электрохимическое воздействие на металл, из которого изготовлена деталь, отсутствует.

Результатом использования такой технологии никелирования является формирование на поверхности обрабатываемой детали никелевого слоя, который прочно связан с основным металлом. Наибольшей эффективности такой способ никелирования позволяет добиться в тех случаях, когда с его помощью обрабатываются предметы, изготовленные из стальных сплавов.

Выполнять такое никелирование в домашних условиях или даже в условиях гаража нетрудно. При этом процедура никелирования проходит в несколько этапов.

  • Сухие реактивы, из которых будет приготовлен электролитический раствор, смешиваются с водой в эмалированной посуде.
  • Полученный раствор доводят до кипения, а затем в него добавляют гипофосфит натрия.
  • Изделие, которое необходимо подвергнуть обработке, помещают в электролитический раствор, причем делают это так, чтобы оно не касалось боковых стенок и дна емкости. Фактически надо изготовить бытовой аппарат для никелирования, конструкция которого будет состоять из эмалированной емкости соответствующего объема, а также диэлектрического кронштейна, на котором будет фиксироваться обрабатываемая деталь.
  • Продолжительность кипения электролитического раствора в зависимости от его химического состава может составлять от одного часа до трех.
  • После завершения технологической операции уже никелированная деталь извлекается из раствора. Затем ее промывают в воде, в составе которой содержится гашеная известь. После тщательной промывки поверхность изделия подвергается полированию.

Электролитические растворы для выполнения никелирования, которому можно подвергать не только сталь, но также латунь, алюминий и другие металлы, обязательно содержат в своем химическом составе следующие элементы – хлористый или сернокислый никель, гипофосфит натрия различной кислотности, какую-либо из кислот.

Чтобы увеличить скорость никелирования изделий из металла, в состав для выполнения этой технологической операции добавляют свинец. Как правило, в одном литре электролитического раствора выполняют никелевое покрытие поверхности, площадь которой составляет 20 см 2 . В электролитических растворах с более высокой кислотностью проводят никелирование изделий из черных металлов, а в щелочных обрабатывают латунь, осуществляют никелирование алюминия или деталей из нержавеющей стали.

Некоторые нюансы технологии

Выполняя никелирование латуни, изделий из стали различных марок и других металлов, следует учитывать некоторые нюансы этой технологической операции.

  • Пленка из никеля будет более устойчивой, если она нанесена на предварительно омедненную поверхность. Еще более устойчивой никелированная поверхность будет в том случае, если готовое изделие будет подвергнуто термической обработке, заключающейся в его выдержке при температуре, превышающей 450°.
  • Если никелированию подвергаются детали из закаленных сталей, то нагревать и выдерживать их можно при температуре, не превышающей 250–300°, иначе они могут утратить свою твердость.
  • При никелировании изделий, отличающихся большими размерами, возникает потребность в постоянном перемешивании и в регулярной фильтрации электролитического раствора. Такая сложность особенно характерна для процессов никелирования, выполняемых не в промышленных, а в домашних условиях.

По сходной с никелированием технологии можно покрыть латунь, сталь и другие металлы слоем серебра. Покрытие из данного металла наносят, в частности, на рыболовные снасти и изделия другого назначения, чтобы предотвратить их потускнение.

Процедура нанесения слоя серебра на сталь, латунь и другие металлы отличается от традиционного никелирования не только температурой проведения и временем выдержки, но также тем, что для нее применяют электролитический раствор определенного состава. При этом выполняют данную операцию в растворе, температура которого составляет 90°.

Свойства и области применения покрытия . Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, мелкокристаллическую структуру и является сплавом никеля с фосфором. Содержание фосфора в осадке зависит от состава раствора и колеблется от 4-6% для щелочных до 8-10% для кислых растворов.

В соответствии с содержанием фосфора изменяются и физические константы никельфосфорного осадка. Удельный вес его равен 7,82-7,88 г/см 3 , температура плавления 890-1200°, удельное электрическое сопротивление составляет 0,60 ом·мм 2 /м. После термообработки при 300-400° твердость никельфосфорного покрытия возрастает до 900-1000 кГ/мм 2 . При этом многократно возрастает и прочность сцепления.

Указанные свойства никельфосфорного покрытия определяют и его области применения.

Его целесообразно применять для покрытия деталей сложного профиля, внутренней поверхности трубок и змеевиков, для равномерного покрытия деталей с весьма точными размерами, для повышения износостойкости трущихся поверхностей и деталей, подвергающихся температурным воздействиям, например, для покрытия пресс-форм.

Никельфосфорному покрытию подвергаются детали из черных металлов, меди, алюминия и никеля.

Этот метод непригоден для осаждения никеля на таких металлах или покрытиях, как свинец, цинк, кадмий и олово.

Осаждение никеля из щелочных растворов . Щелочные растворы характеризуются высокой устойчивостью, простотой корректировки, отсутствием склонности к бурному и мгновенному выпадению порошкообразного никеля (явление саморазряда) и возможностью их длительной эксплуатации без замены.

Скорость осаждения никеля составляет 8-10 мк/час. Процесс идет с интенсивным выделением водорода на поверхности Деталей.

Составление раствора заключается в растворении каждого из компонентов в отдельности, после чего их сливают вместе в рабочую ванну, за исключением гипофосфита натрия. Его приливают лишь тогда, когда раствор нагрет до рабочей температуры и детали подготовлены к покрытию.

Подготовка поверхности стальных деталей к покрытию не имеет специфических особенностей.

После подогрева раствора до рабочей температуры его корректируют 25-процентным раствором аммиака до устойчивого синего цвета, приливают раствор гипофосфита натрия, завешивают детали и приступают к покрытию без предварительной проработки. Корректировку раствора производят главным образом аммиаком и гипофосфитом натрия. При большом объеме ванны никелирования и высокой удельной загрузке деталей корректировку раствора аммиаком осуществляют непосредственно от баллона с газообразным аммиаком, с непрерывной подачей газа к дну ванны посредством резиновой трубки.

Раствор гипофосфита натрия для удобства корректировки готовят с концентрацией 400-500 г/л.

Раствор хлористого никеля обычно готовят для корректировки совместно с хлористым аммонием и лимоннокислым натрием. Для этой цели наиболее целесообразно пользоваться раствором, содержащим 150 г/л хлористого никеля, 150 г/л хлористого аммония и 50 г/л лимоннокислого натрия.

Удельный расход гипофосфита натрия на 1 дм 2 поверхности покрытия, при толщине слоя 10 мк, составляет около 4,5 г, а никеля, в пересчете на металл, - около 0,9 г.

Основные неполадки при химическом осаждении никеля из щелочных растворов приведены в табл. 8.

Осаждение никеля из кислых растворов . В отличие от щелочных кислые растворы характеризуются большим разнообразием добавок к растворам солей никеля и гипофосфита. Так, для этой цели могут применяться уксуснокислый натрий, янтарная, винная и молочная кислоты, трилон Б и прочие органические соединения. Из числа многих составов ниже приведен раствор со следующим составом и режимом осаждения:


Величину рН следует корректировать 2-процентным раствором едкого натра. Скорость осаждения никеля составляет 8-10 мк/час.

Перегрев раствора выше 95° может привести к саморазряду никеля с мгновенным выпадением темного губчатого осадка и выплескиванием раствора из ванны.

Корректировку раствора по концентрации входящих в него компонентов производят лишь до накопления в нем 55 г/л фосфита натрия NaH 2 PО 3 , после чего из раствора может выпадать фосфит никеля. По достижении указанной концентрации фосфита никелевый раствор сливают и заменяют новым.

Термообработка . В тех случаях, когда никель наносят с целью увеличения поверхностной твердости и износостойкости, детали подвергают термообработке. При высоких температурах никельфосфорный осадок образует химическое соединение, что обусловливает резкое повышение его твердости.

Изменение микротвердости в зависимости от температуры нагрева приведено на фиг. 13. Как видно из диаграммы, наибольшее повышение твердости имеет место в диапазоне температур 400-500°. При выборе температурного режима следует учитывать, что для ряда сталей, прошедших закалку или нормализацию, высокие температуры не всегда допустимы. Кроме того, термообработка, проводящаяся в воздушной среде, вызывает появление цветов побежалости на поверхности деталей, переходящих от золотисто-желтого цвета до фиолетового. По этим причинам температуру нагрева часто ограничивают в пределах 350-380°. Необходимо также, чтобы никелированные поверхности перед укладкой в печь были чистыми, так как всякие загрязнения выявляются после термообработки весьма интенсивно и удаление их возможно лишь полировкой. Продолжительность нагрева в 40-60 мин. является достаточной.

Оборудование и оснастка . Основной задачей при изготовлении оборудования для химического никелирования является выбор футеровки ванн, устойчивой к действию кислот и щелочей и теплопроводной. Для опытных работ и для покрытия мелких деталей используют фарфоровые и стальные эмалированные ванны.

При покрытии крупных изделий в ваннах емкостью 50-100 л и более применяются эмалированные баки с эмалями, стойкими в крепкой азотной кислоте. Некоторые заводы применяют стальные цилиндрические ванны, футерованные обмазкой, состоящей из клея № 88 и порошкообразной окиси хрома взятых в равных весовых количествах. Окись хрома может быть заменена наждачными микропорошками. Покрытие производят в 5-6 слоев с промежуточной воздушной сушкой.

На Кировском заводе для этой цели успешно применяют футеровку цилиндрических ванн съемными пластикатовыми чехлами. При необходимости очистки ванн растворы выкачивают насосом, а чехлы извлекают и обрабатывают в азотной кислоте. В качестве материала для подвесок и корзин следует применять углеродистую сталь. Изоляцию отдельных участков деталей и подвесок производят перхлорвиниловыми эмалями или пластикатом.

Для нагревания раствора следует применять электрические нагреватели с передачей тепла через водяную рубашку. Термообработку мелких деталей производят в термостатах. Для крупных изделий используют шахтные печи с автоматическим регулированием температуры.

Никелирование нержавеющих и кислотоупорных сталей . Никелирование производят для повышения поверхностной твердости и износостойкости, а также для защиты от коррозии в тех агрессивных средах, в которых эти стали неустойчивы.

Для прочности сцепления никельфосфорного слоя с поверхностью высоколегированных сталей решающее значение имеет способ подготовки к покрытию. Так, для нержавеющих сталей марки 1×13 и ей подобных подготовка поверхности заключается в ее анодной обработке в щелочных растворах. Детали монтируют на подвесках из углеродистой стали, применяя, если это необходимо, внутренние катоды, завешивают в ванну с 10-15-процентным раствором каустической соды и производят их анодную обработку при температуре электролита 60-70° и анодной плотности тока 5-10 а/дм 2 в течение 5-10 мин. до образования равномерного коричневого налета без металлических просветов. Затем детали промывают в холодной проточной воде, декапируют в соляной кислоте (уд. веса 1,19), разбавленной вдвое, при температуре 15-25° в течение 5-10 сек. После промывки в холодной проточной воде детали завешивают в ванну химического никелирования в щелочном растворе и покрывают по обычному режиму до заданной толщины слоя.

Для деталей из кислотоупорной стали типа IX18H9T анодная обработка должна производиться в хромовокислом электролите со следующим составом и режимом процесса:


После анодной обработки детали промывают в холодной проточной воде, декапируют в соляной кислоте, как это указано для нержавеющей стали, и завешивают в ванну никелирования.

Никелирование цветных металлов . Для осаждения никеля на ранее осажденный слой никеля детали обезжиривают, а затем декапируют в 20-30-процентном растворе соляной кислоты в течение 1 мин., после чего завешивают в ванну для химического никелирования. Детали из меди и ее сплавов никелируют в контакте с более электроотрицательным металлом, например с железом или с алюминием, используя для этой цели проволоку или подвески из этих металлов. В некоторых случаях для возникновения реакции осаждения достаточно создать кратковременное касание железного прута к поверхности медной детали.

Для никелирования алюминия и его сплавов детали травят в щелочи, осветляют в азотной кислоте, как это делается перед, всеми видами покрытий, и подвергают двукратной цинкатной обработке в растворе, содержащем 500 г/л едкого натра и 100 г/л окиси цинка, при температуре 15-25°. Первое погружение длится 30 сек., после чего осадок контактного цинка стравливают в разбавленной азотной кислоте, а второе погружение 10 сек., после чего детали промывают в холодной проточной воде и никелируют в ванне с щелочным никельфосфорным раствором. Полученное покрытие весьма непрочно связано с алюминием, и для повышения прочности сцепления детали прогревают, погружая их в смазочное масло при температуре 220-250° на 1-2 часа.

После термообработки детали обезжиривают растворителями и по мере необходимости протирают, полируют или подвергают другим видам механической обработки.

Никелирование металлокерамики и керамики . Технологический процесс никелирования ферритов заключается в следующих операциях: детали обезжиривают в 20-процентном растворе кальцинированной соды, промывают горячей дистиллированной водой и травят в течение 10-15 мин. в спиртовом растворе соляной кислоты с соотношением компонентов 1:1. Затем детали снова промывают горячей дистиллированной водой с одновременной очисткой шлама волосяными щетками. На покрываемые поверхности деталей кисточкой наносят раствор хлористого палладия с концентрацией его 0,5-1,0 г/л и рН 3,54:0,1. После воздушной сушки нанесение хлористого палладия повторяют еще раз, просушивают и погружают для предварительного никелирования в ванну с кислым раствором, содержащим 30 г/л хлористого никеля, 25 г/л гипофосфита натрия и 15 г/л янтарнокислого натрия. Для этой операции необходимо температуру раствора поддерживать в пределах 96-98° и рН 4,5-4,8. Затем детали промывают в дистиллированной горячей воде и никелируют в том же растворе, но при температуре 90°, до получения слоя толщиной 20-25 мк. После этого детали кипятят в дистиллированной воде, меднят в пирофосфатном электролите до получения слоя 1-2 мк, после чего подвергают бескислотной пайке. Прочность сцепления никельфосфорного покрытия с ферритной основой составляет 60-70 кГ/см 2 .

Кроме того, химическому никелированию подвергаются различные виды керамики, например ультрафарфор, кварц, стеатит, пьезокерамика, тиконд, термоконд и пр.

Технология никелирования составляется из следующих операций: детали обезжиривают спиртом, промывают в горячей воде и сушат.

После этого для деталей из тиконда, термоконда и кварца, производят сенсибилизацию их поверхности раствором, содержащим 10 г/л хлористого олова SnCl 2 и 40 мл/л соляной кислоты. Эта операция производится кисточкой или путем Натирания Деревянной шайбой, смоченной раствором, или же погружением деталей в раствор на 1-2 мин. Затем поверхность деталей активируют в растворе хлористого палладия PdCl 2 ·2Н 2 О.

Для ультрафарфора применяют подогретый раствор с концентрацией PdCl 2 ·2H 2 O 3-6 г/л и с длительностью погружения 1 сек. Для тиконда, термоконда и кварца концентрация снижается до 2-3 г/л с увеличением выдержки от 1 до 3 мин., после чего детали погружают в раствор, содержащий гипофосфит кальция Са(Н 2 РO 2) 2 в количестве 30 г/л, без подогрева, на 2-3 мин.

Детали из ультрафарфора с активированной поверхностью завешивают на 10-30 сек. в ванну предварительного никелирования со щелочным раствором, после чего детали промывают и снова завешивают в ту же ванну для наращивания слоя заданной толщины.

Детали из тиконда, термоконда и кварца после обработки в гипофосфите кальция никелируют в кислых растворах.

Химическое осаждение никеля из карбонильных соединений . При нагревании паров тетракарбонила никеля Ni(CO) 4 при температуре 280°±5 происходит реакция термического разложения карбонильных соединений с осаждением металлического никеля. Процесс осаждения происходит в герметически закрытом контейнере при атмосферном давлении. Газовая среда состоит из 20-25% (по объему) тетракарбонила никеля и 80-75% закиси углерода СO. Примесь кислорода в газе допустима не свыше 0,4%. Для равномерности осаждения следует создавать циркуляцию газа со скоростью подачи 0,01-0,02 м/сек и реверсированием направления подачи через каждые 30-40 сек. . Подготовка деталей к покрытию заключается в удалении окислов и жировых загрязнений. Скорость осаждения никеля составляет 5-10 мк/мин. Осажденный никель имеет матовую поверхность, темно-серый оттенок, мелкокристаллическую структуру, твердость 240-270 по Виккерсу и относительно малую пористость.

Прочность сцепления покрытия с металлом изделий весьма низка и для ее повышения до удовлетворительных величин необходима термообработка при 600-700° в течение 30-40 мин.

Информация к действию
(технологические советы)
Ерлыкин Л.А. «Сделай Сам» 3-92

Перед кем из домашних умельцев не вставала необходимость отникелировать или отхромировать ту или иную деталь. Какой самоделыцик не мечтал установить в ответственном узле «несрабатывающуюся» втулку с твердой, износостойкой поверхностью, полученной путем насыщения ее бором. Но как сделать в домашних условиях то, что, как правило, осуществляется на специализированных предприятиях методами химико-термической и электрохимической обработки металлов. Не будешь же строить дома газовые и вакуумные печи, сооружать электролизные ванны. Но, оказывается, строить все это совсем и не надо. Достаточно иметь под рукой некоторые реактивы, эмалированную кастрюлю да и, пожалуй, паяльную лампу, а также знать рецепты «химической технологии», с помощью которой можно металлы также меднить, кадмировать, лудить, оксидировать и т.д.

Итак, начнем знакомиться с секретами химической технологии. Учтите, что содержание компонентов в приведенных растворах, как правило, даются в г/л. В случае, если применяются другие единицы, следует специальная оговорка.

Подготовительные операции

Перед нанесением на металлические поверхности красок, защитных и декоративных пленок, а также перед покрытием их другими металлами необходимо осуществить подготовительные операции, то есть удалить с этих поверхностей загрязнения различной природы. Учтите, от качества проведения подготовительных операций в сильной степени зависит конечный результат всех работ.

К подготовительным операциям относятся обезжиривание, очистка и травление.

Обезжиривание

Процесс обезжиривания поверхности металлических деталей проводят, как правило, когда эти детали только что обработаны (отшлифованы или отполированы) и на их поверхности нет ржавчины, окалины и других посторонних продуктов.

С помощью обезжиривания с поверхности деталей удаляют масляные и жировые пленки. Для этого применяют водные растворы некоторых химреактивов, хотя для этого можно использовать и органические растворители. Последние имеют то преимущество, что они не оказывают последующего коррозионного воздействия на поверхность деталей, но при этом они токсичны и огнеопасны.

Водные растворы. Обезжиривание металлических деталей в водных растворах проводят в эмалированной посуде. Заливают воду, растворяют в ней химреактивы и ставят на малый огонь. При достижении нужной температуры загружают в раствор детали. В процессе обработки раствор перемешивают. Ниже приводятся составы обезжиривающих растворов (г/л), а также рабочие температуры растворов и время обработки деталей.

Составы обезжиривающих растворов (г/л)

Для черных металлов (железо и железные сплавы)

Жидкое стекло (канцелярский силикатный клей) - 3...10, едкий натр (калий) - 20...30, тринатрийфосфат - 25...30. Температура раствора - 70...90° С, время обработки - 10...30 мин.

Жидкое стекло - 5...10, едкий натр - 100...150, кальцинированная сода - 30...60. Температура раствора - 70...80°С, время обработки - 5...10 мин.

Жидкое стекло - 35, тринатрийфосфат- 3...10. Температура раствора - 70...90°С, время обработки - 10...20 мин.

Жидкое стекло - 35, тринатрийфосфат - 15, препарат - эмульгатор ОП-7 (или ОП-10)-2. Температура раствора - 60-70°С, время обработки - 5...10 мин.

Жидкое стекло - 15, препарат ОП-7(или ОП-10)-1. Температура раствора - 70...80°С, время обработки- 10...15 мин.

Кальцинированная сода - 20, калиевый хромпик - 1. Температура раствора - 80...90°С, время обработки - 10...20 мин.

Кальцинированная сода - 5...10, тринатрийфосфат - 5...10, препарат ОП-7 (или ОП-10) - 3. Температура раствора - 60...80°С, время обработки - 5...10 мин.

Для меди и медных сплавов

Едкий натр - 35, кальцинированная сода - 60, тринатрийфосфат - 15, препарат ОП-7 (или ОП-10) - 5. Температура раствора - 60...70, время обработки - 10...20 мин.

Едкий натр (калий) - 75, жидкое стекло - 20 Температура раствора - 80...90°С, время обработки - 40...60 мин.

Жидкое стекло - 10...20, тринатрийфосфат- 100. Температура раствора - 65...80 С, время обработки - 10...60 мин.

Жидкое стекло - 5...10, кальцинированная сода - 20...25, препарат ОП-7 (или ОП-10)-5...10. Температура раствора - 60...70°С, время обработки - 5...10 мин.

Тринатрийфосфат - 80...100. Температура раствора - 80...90°С, время обработки - 30...40 мин.

Для алюминия и его сплавов

Жидкое стекло - 25...50, кальцинированная сода - 5...10, тринатрийфосфат-5...10, препарат ОП-7 (илиОП-10) - 15...20 мин.

Жидкое стекло - 20...30, кальцинированная сода - 50...60, тринатрийфосфат- 50…60. Температура раствора - 50…60°С, время обработки - 3...5 мин.

Кальцинированная сода - 20...25, тринатрийфосфат - 20...25, препарат ОП-7 (или ОП-10)-5...7. Температура - 70...80°С, время обработки - 10...20 мин.

Для серебра, никеля и их сплавов

Жидкое стекло - 50, кальцинированная сода - 20, тринатрийфосфат - 20, препарат ОП-7 (или ОП-10) - 2. Температура раствора - 70...80°С, время обработки - 5...10 мин.

Жидкое стекло - 25, кальцинированная сода - 5, тринатрийфосфат - 10. Температура раствора - 75...85°С, время обработки - 15...20 мин.

Для цинка

Жидкое стекло - 20...25, едкий натр - 20...25, кальцинированная сода - 20...25. Температура раствора - 65...75°С, время обработки - 5 мин.

Жидкое стекло - 30...50, кальцинированная сода - 30..,50, керосин - 30...50, препарат ОП-7 (или ОП-10) - 2...3. Температура раствора - 60-70°С, время обработки - 1...2 мин.

Органические растворители

Наиболее применяемыми из органических растворителей являются бензин Б-70 (или «бензин для Зажигалок») и ацетон. Однако они обладают существенным недостатком - легко воспламеняются. Поэтому в последнее время их заменяют негорючими растворителями, такими, как трихлорэтилен и перхлорэтилен. Растворяющая способность их значительно выше, чем у бензина и ацетона. Причем эти растворители можно безбоязненно нагревать, что намного ускоряет обезжиривание металлических деталей.

Обезжиривание поверхности металлических деталей с помощью органических растворителей проводят в такой последовательности. Детали загружают в посуду с растворителем и выдерживают 15...20 мин. Затем поверхность деталей протирают прямо в растворителе щеткой. После такой обработки поверхность каждой детали тщательно обрабатывают тампоном, смоченным 25%-ным аммиаком (работать необходимо в резиновых перчатках!).

Все работы по обезжириванию органическими растворителями проводят в хорошо проветриваемом помещении.

Очистка

В этом разделе в качестве примера будет рассмотрен процесс очистки от нагара двигателей внутреннего сгорания. Как известно, нагар представляет собой асфальтосмолистые вещества, образующие на рабочих поверхностях двигателей трудноудалимые пленки. Удаление нагара - задача довольно сложная, так как пленка нагара инертна и прочно сцеплена с поверхностью детали.

Составы очищающих растворов (г/л)

Для черных металлов

Жидкое стекло - 1,5, кальцинированная сода - 33, едкий натр - 25, хо-зяйственное мыло - 8,5. Температура раствора - 80...90°С, время обработки - Зч.

Едкий натр - 100, бихромат калия - 5. Температура раствора - 80...95°С, время обработки - до 3 ч.

Едкий натр - 25, жидкое стекло - 10, бихромат натрия - 5, хозяйственное мыло - 8, кальцинированная сода - 30. Температура раствора - 80...95°С, время обработки - до 3 ч.

Едкий натр - 25, жидкое стекло - 10, хозяйственное мыло - 10, поташ - 30. Температура раствора - 100°С, время обработки - до 6 ч.

Для алюминиевых (дюралюминиевых) сплавов

Жидкое стекло 8,5, хозяйственное мыло - 10, кальцинированная сода - 18,5. Температура раствора - 85...95 С, время обработки - до 3 ч.

Жидкое стекло - 8, бихромат калия - 5, хозяйственное мыло - 10, кальцинированная сода - 20. Температура раствора - 85...95°С, время обработки - до 3 ч.

Кальцинированная сода - 10, бихромат калия - 5, хозяйственное мыло - 10. Температура раствора - 80...95°С, время обработки - до 3 ч.

Травление

Травление (как подготовительная операция) позволяет удалить с металлических деталей прочно сцепленные с их поверхностью загрязнения (ржавчину, окалину и другие продукты коррозии).

Основная цель травления - снятие продуктов коррозии; при этом основной металл не должен травиться. Чтобы предотвратить травление металла, в растворы вводят специальные добавки. Хорошие результаты дает применение небольших количеств гексаметилентетрамина (уротропина). Во все растворы для травления черных металлов добавляют 1 таблетку (0,5 г) уротропина на 1 л раствора. При отсутствии уротропина его заменяют таким же количеством сухого спирта (продается в спортмагазинах как топливо для туристов).

Ввиду того что в рецептах для травления применяют неорганические кислоты, необходимо знать их исходную плотность (г/см 3): азотная кислота - 1,4, серная кислота - 1,84; соляная кислота - 1,19; ортофосфорная кислота - 1,7; уксусная кислота - 1,05.

Составы растворов для травления

Для черных металлов

Серная кислота - 90...130, соляная кислота - 80...100. Температура раствора - 30...40°С, время обработки - 0, 5...1,0 ч.

Серная кислота - 150...200. Температура раствора - 25...60°С, время обработки - 0,5...1 ,0 ч.

Соляная кислота - 200. Температура раствора - 30...35°С, время обработки - 15...20 мин.

Соляная кислота - 150...200, формалин- 40...50. Температура раствора 30...50°С, время обработки 15...25 мин.

Азотная кислота - 70...80, соляная кислота - 500...550. Температура раствора - 50°С, время обработки - 3...5 мин.

Азотная кислота - 100, серная кислота - 50, соляная кислота - 150. Температура раствора - 85°С, время обработки - 3...10 мин.

Соляная кислота - 150, ортофосфорная кислота - 100. Температура раствора - 50°С, время обработки - 10...20 мин.

Последний раствор (при обработке стальных деталей) кроме очистки поверхности еще и фосфатирует ее. А фосфатные пленки на поверхности стальных деталей позволяют окрашивать их любыми красками без грунта, так как эти пленки сами служат превосходным грунтом.

Приведем еще несколько рецептов травящих растворов, составы которых на этот раз приведены в % (по массе).

Ортофосфорная кислота - 10, бутиловый спирт - 83, вода - 7. Температура раствора - 50...70°С, время обработки - 20...30 мин.

Ортофосфорная кислота - 35, бутиловый спирт - 5, вода - 60. Температура раствора - 40...60°С, время обработки - 30...35 мин.

После травления черных металлов их промывают в 15%-ном растворе кальци-нированной (или питьевой) соды. Затем тщательно промывают водой.

Отметим, что ниже составы растворов опять приводятся в г/л.

Для меди и ее сплавов

Серная кислота - 25...40, хромовый ангидрид - 150...200. Температура раствора - 25°С, время обработки - 5...10 мин.

Серная кислота - 150, бихромат калия - 50. Температура раствора - 25,.35°С, время обработки - 5...15 мин.

Трилон Б- 100. Температура раствора - 18...25°С, время обработки - 5...10 мин.

Хромовый ангидрид - 350, хлористый натрий - 50. Температура раствора - 18...25°С, время обработки - 5…15 мин.

Для алюминия и его сплавов

Едкий натр -50...100. Температура раствора - 40...60°С, время обработки - 5...10 с.

Азотная кислота - 35...40. Температура раствора - 18...25°С, время обработки - 3...5 с.

Едкий натр - 25...35, кальцинированная сода - 20...30. Температура раствора - 40...60°С, время обработки - 0,5...2,0 мин.

Едкий натр - 150, хлористый натрий - 30. Температура раствора - 60°С, время обработки - 15…20 с.

Химическое полирование

Химическое полирование позволяет быстро и качественно обработать поверхности металлических деталей. Большое преимущество такой технологии заключается в том, что с помощью ее (и только ее!) удается отполировать в домашних условиях детали со сложным профилем.

Составы растворов для химического полирования

Для углеродистых сталей (содержание компонентов указывается в каждом конкретном случае в тех или иных единицах (г/л, процентах, частях)

Азотная кислота - 2.-.4, соляная кислота 2...5, Ортофосфорная кислота - 15...25, остальное - вода. Температура раствора - 70...80°С, время обработки - 1...10 мин. Содержа¬ние компонентов - в % (по объему).

Серная кислота - 0,1, уксусная кислота - 25, перекись водорода (30%-ная) - 13. Температура раствора - 18...25°С, время обработки - 30...60 мин. Содержание компонентов - в г/л.

Азотная кислота - 100...200, серная кислота - 200..,600, соляная кислота - 25, Ортофосфорная кислота - 400. Температура смеси - 80...120°С, время обработки - 10...60 с. Содержание компонентов в частях (по объему).

Для нержавеющей стали

Серная кислота - 230, соляная кислота - 660, кислотный оранжевый краситель - 25. Температура раствора - 70...75°С, время обработки - 2...3 мин. Содержание компонентов - в г/л.

Азотная кислота - 4...5, соляная кислота - 3...4, Ортофосфорная кислота - 20.,.30, метилоранж - 1,..1,5, остальное - вода. Температура раствора - 18...25°С, время обработки - 5..10 мин. Содержа¬ние компонентов - в % (по массе).

Азотная кислота - 30...90, железистосинеродистый калий (желтая кровяная соль) - 2...15 г/л, препарат ОП-7 - 3...25, соляная кислота - 45..110, ортофосфорная кислота - 45...280.

Температура раствора - 30...40°С, время обработки - 15...30 мин. Содержание компонентов (кроме желтой кровяной соли) - в пл/л.

Последний состав применим для полирования чугуна и любых сталей.

Для меди

Азотная кислота - 900, хлористый натрий - 5, сажа - 5. Температура раствора - 18...25°С, время обработки - 15...20 с. Содержание компонентов - г/л.

Внимание! В растворы хлористый натрий вводят в последнюю очередь, причем раствор должен быть предварительно охлажден!

Азотная кислота - 20, серная кислота - 80, соляная кислота - 1, хромовый ангидрид - 50. Температура раствора - 13..18°С, время обработки - 1...2 мин. Содержание компонентов - в мл.

Азотная кислота 500, серная кислота - 250, хлористый натрий - 10. Температура раствора - 18...25°С, время обработки - 10...20 с. Содержание компонентов - в г/л.

Для латуни

Азотная кислота - 20, соляная кислота - 0,01, уксусная кислота - 40, ортофосфорная кислота - 40. Температура смеси - 25...30°С, время обработки - 20...60 с. Содержание компонентов - в мл.

Сернокислая медь (медный купорос) - 8, хлористый натрий - 16, уксусная кислота - 3, вода - остальное. Температура раствора - 20°С, время обработки - 20...60 мин. Содержание компонентов - в % (по массе).

Для бронзы

Ортофосфорная кислота - 77...79, азотнокислый калий - 21...23. Температура смеси - 18°С, время обработки - 0,5-3 мин. Содержание компонентов - в % (по массе).

Азотная кислота - 65, хлористый натрий - 1 г, уксусная кислота - 5, ор-тофосфорная кислота - 30, вода - 5. Температура раствора - 18...25°С, время обработки - 1...5 с. Содержание компонентов (кроме хлористого натрия) - в мл.

Для никеля и его сплавов (мельхиора и нейзильбера)

Азотная кислота - 20, уксусная кислота - 40, ортофосфорная кислота - 40. Температура смеси - 20°С, время обработки - до 2 мин. Содержание компонентов - в % (по массе).

Азотная кислота - 30, уксусная кислота (ледяная) - 70. Температура смеси - 70...80°С, время обработки - 2...3 с. Содержание компонентов - в % (по объему).

Для алюминия и его сплавов

Ортофосфорная кислота - 75, серная кислота - 25. Температура смеси - 100°С, время обработки - 5...10 мин. Содержание компонентов - в частях (по объему).

Ортофосфорная кислота - 60, серная кислота - 200, азотная кислота - 150, мочевина - 5г. Температура смеси - 100°С, время обработки - 20 с. Содержание компонентов (кроме мочевины) - в мл.

Ортофосфорная кислота - 70, серная кислота - 22, борная кислота - 8. Температура смеси - 95°С, время обработки - 5...7 мин. Содержание компонентов - в частях (по объему).

Пассивирование

Пассивирование - процесс создания химическим путем на поверхности металла инертного слоя, который не дает собственно металлу окисляться. Процессом пассивирования поверхности металлических изделий пользуются чеканщики при создании своих произведений; умельцы - при изготовлении различных поделок (люстр, бра и других предметов обихода); рыболовы-спортсмены пассивируют свои самодельные металлические приманки.

Составы растворов для пассивирования (г/л)

Для черных металлов

Нитрит натрия - 40. ..100. Температура раствора - 30...40°С, время обработки - 15...20 мин.

Нитрит натрия - 10...15, кальцинированная сода - 3...7. Температура раствора - 70...80°С, время обработки - 2...3 мин.

Нитрит натрия - 2...3, кальцинированная сода - 10, препарат ОП-7 - 1...2. Температура раствора - 40...60°С, время обработки - 10...15 мин.

Хромовый ангидрид - 50. Температура раствора - 65...75"С, время обработки - 10...20 мин.

Для меди и ее сплавов

Серная кислота - 15, бихромат калия - 100. Температура раствора - 45°С, время обработки - 5...10 мин.

Бихромат калия - 150. Температура раствора - 60°С, время обработки - 2...5 мин.

Для алюминия и его сплавов

Ортофосфорная кислота - 300, хромовый ангидрид - 15. Температура раствора - 18...25°С, время обработки - 2...5 мин.

Бихромат калия - 200. Температура раствора - 20°С, «время обработки -5...10 мин.

Для серебра

Бихромат калия - 50. Температура раствора - 25...40°С, время обработки - 20 мин.

Для цинка

Серная кислота - 2...3, хромовый ангидрид - 150...200. Температура раствора - 20°С, время обработки - 5...10 с.

Фосфатирование

Как уже было сказано, фосфатная пленка на поверхности стальных деталей представляет собой достаточно надежное антикоррозионное покрытие. Оно также является отличным грунтом под лакокрасочные покрытия.

Некоторые низкотемпературные способы фосфатирования применимы для обработки кузовов легковых автомобилей перед покрытием их антикоррозионными и противоизносными составами.

Составы растворов для фосфатирования (г/л)

Для стали

Мажеф (фосфорнокислые соли марганца и железа) - 30, азотнокислый цинк - 40, фтористый натрий - 10. Температура раствора - 20°С, время обработки - 40 мин.

Моноцинкфосфат - 75, азотнокислый цинк - 400...600. Температура раствора - 20°С, время обработки - 20...30 с.

Мажеф - 25, азотнокислый цинк - 35, нитрит натрия - 3. Температура раствора - 20°С, время обработки - 40 мин.

Моноаммонийфосфат - 300. Температура раствора - 60…80°С, время обработки - 20...30 с.

Ортофосфорная кислота - 60...80, хромовый ангидрид- 100...150. Температура раствора - 50...60°С, время обработки - 20...30 мин.

Ортофосфорная кислота - 400...550, бутиловый спирт - 30. Температура раствора - 50°С, время обработки - 20 мин.

Нанесение металлических покрытий

Химическое покрытие одних металлов другими подкупает простотой технологического процесса. Действительно, если, например, необходимо химически отникелировать какую-либо стальную деталь, достаточно иметь подходящую эмалированную посуду, источник нагрева (газовая плита, примус и т.п.) и относительно недефицитные химреактивы. Час-другой - и деталь покрыта блестящим слоем никеля.

Заметим, что только с помощью химического никелирования можно надежно отникелировать детали сложного профиля, внутренние полости (трубы и т.п.). Правда, химическое никелирование (и некоторые другие подобные процессы) не лишено и недостатков. Основной из них - не слишком крепкое сцепление никелевой пленки с основным металлом. Однако этот недостаток устраним, для этого применяют так называемый метод низкотемпературной диффузии. Он позволяет значительно повысить сцепление никелевой пленки с основным металлом. Метод этот применим для всех химических покрытий одних металлов другими.

Никелирование

В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей с помощью гипофосфита натрия и некоторых других химреактивов.

Никелевые покрытия, полученные химическим путем, имеют аморфную структуру. Наличие в никеле фосфора делает пленку близкой по твердости пленке хрома. К сожалению, сцепление пленки никеля с основным металлом сравнительно низкое. Термическая обработка пленок никеля (низкотемпературная диффузия) заключается в нагреве отникелированных деталей до температуры 400°С и выдержке их при этой температуре в течение 1 ч.

Если покрываемые никелем детали закалены (пружины, ножи, рыболовные крючки и т.п.), то при температуре 40°С они могут отпуститься, то есть потерять свое основное качество - твердость. В этом случае низкотемпературную диффузию проводят при температуре 270...300 С с выдержкой до 3 ч. При этом термообработка повышает и твердость никелевого покрытия.

Все перечисленные достоинства химического никелирования не ускользнули от внимания технологов. Они нашли им практическое применение (кроме использования декоративных и антикоррозионных свойств). Так, с помощью химического никелирования осуществляется ремонт осей различных механизмов, червяков резьбонарезных станков и т.д.

В домашних условиях с помощью никелирования (конечно, химического!) можно отремонтировать детали различных бытовых устройств. Технология здесь предельно проста. Например, сносилась ось какого-либо устройства. Тогда наращивают (с избытком) слой никеля на поврежденном месте. Затем рабочий участок оси полируют, доводя его до нужного размера.

Надо отметить, что с помощью Химического никелирования нельзя покрывать такие металлы, как олово, свинец, кадмий, цинк, висмут и сурьму.
Растворы, применяемые для химического никелирования, подразделяются на кислые (рН - 4...6,5) и щелочные (рН - выше 6,5). Кислые растворы предпочтительнее применять для покрытия черных металлов, меди и латуни. Щелочные - для нержавеющих сталей.

Кислые растворы (по сравнению с щелочными) на полированной детали дают более гладкую (зеркальную) поверхность, у них меньшая пористость, скорость протекания процесса выше. Еще немаловажная особенность кислых растворов: у них меньше вероятность саморазряда при превышении рабочей температуры. (Саморазряд - мгновенное выпадение никеля в раствор с расплескиванием последнего.)

У щелочных растворов основное преимущество - более надежное сцепление никелевой пленки с основным металлом.

И последнее. Воду для никелирования (и при нанесении других покрытий) берут дистиллированную (можно использовать конденсат из бытовых холодильников). Химреактивы подойдут как минимум чистые (обозначение на этикетке - Ч).

Перед покрытием деталей любой металлической пленкой необходимо провести специальную подготовку их поверхности.

Подготовка всех металлов и сплавов заключается в следующем. Обработанную деталь обезжиривают в одном из водных растворов, а затем деталь декапируют в одном из нижеперечисленных растворов.

Составы растворов для декапирования (г/л)

Для стали

Серная кислота - 30...50. Температура раствора - 20°С, время обработки - 20...60 с.

Соляная кислота - 20...45. Температура раствора - 20°С, время обработки- 15...40 с.

Серная кислота - 50...80, соляная кислота - 20...30. Температура раствора - 20°С, время обработки - 8...10 с.

Для меди и ее сплавов

Серная кислота - 5%-ный раствор. Температура - 20°С, время обработки - 20с.

Для алюминия и его сплавов

Азотная кислота. (Внимание, 10...15%-ный раствор.) Температура раствора - 20°С, время обработки - 5...15 с.

Учтите, что для алюминия и его сплавов перед химическим никелированием проводят еще одну обработку - так называемую цинкатную. Ниже приведены растворы для цинкатной обработки.

Для алюминия

Едкий натр - 250, окись цинка - 55. Температура раствора - 20 С, время обработки - З...5с.

Едкий натр - 120, сернокислый цинк - 40. Температура раствора - 20°С, время обработки - 1,5...2 мин.

При подготовке обоих растворов сначала отдельно в половине воды растворяют едкий натр, в другой половине - цинковую составляющую. Затем оба раствора сливают вместе.

Для литейных алюминиевых сплавов

Едкий натр - 10, окись цинка - 5, сегнетова соль (кристаллогидрат) - 10. Температура раствора - 20 С, время обработки - 2 мин.

Для деформируемых алюминиевых сплавов

Хлорное железо (кристаллогидрат) - 1, едкий натр - 525, окись цинка 100, сегнетова соль - 10. Температура раствора - 25°С, время обработки - 30...60 с.

После цинкатной обработки детали промывают в воде и завешивают их в раствор для никелирования.

Все растворы для никелирования универсальны, то есть годны для всех металлов (хотя есть и некоторая специфика). Готовят их в определенной последовательности. Так, все химреактивы (кроме гипофосфита натрия) растворяют в воде (посуда эмалированная!). Затем раствор разогревают до рабочей температуры и только после этого растворяют гипофосфит натрия и завешивают детали в раствор.

В 1 л раствора можно отникелировать поверхность площадью до 2 дм2 .

Составы растворов для никелирования (г/л)

Сернокислый никель - 25, янтарнокислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90°С, рН - 4,5, скорость наращивания пленки - 15...20 мкм/ч.

Хлористый никель - 25, янтарно-кислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90...92°С, рН - 5,5, скорость наращивания - 18...25 мкм/ч.

Хлористый никель - 30, гликолевая кислота - 39, гипофосфит натрия - 10. Температура раствора 85,..89°С, рН - 4,2, скорость наращивания - 15...20 мкм/ч.

Хлористый никель - 21, уксуснокислый натрий - 10, гипофосфит натрия - 24, Температура раствора - 97°С, рН - 5,2, скорость наращивания - до 60 мкм/ч.

Сернокислый никель - 21, уксуснокислый натрий - 10, сульфид свинца - 20, гипофосфит натрия - 24. Температура раствора - 90°С, рН - 5, скорость наращивания - до 90 мкм/ч.

Хлористый никель - 30, уксусная кислота - 15, сульфид свинца - 10...15, гипофосфит натрия - 15. Температура раствора - 85...87°С, рН - 4,5, скорость наращивания - 12...15 мкм/ч.

Хлористый никель - 45, хлористый аммоний - 45, лимоннокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 90°С, рН - 8,5, скорость наращивания - 18... 20 мкм/ч.

Хлористый никель - 30, хлористый аммоний - 30, янтарнокислый натрий - 100, аммиак (25%-ный раствор - 35, гипофосфит натрия - 25).
Температура - 90°С, рН - 8...8,5, скорость наращивания - 8...12 мкм/ч.

Хлористый никель - 45, хлористый аммоний - 45, уксуснокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 88....90°С, рН - 8...9, скорость наращивания - 18...20 мкм/ч.

Сернокислый никель - 30, сернокислый аммоний - 30, гипофосфит натрия - 10. Температура раствора - 85°С, рН - 8,2...8,5, скорость наращивания - 15...18 мкм/ч.

Внимание! По существующим ГОСТам однослойное покрытие никелем на 1 см2 имеет несколько десятков сквозных (до основного металла) пор. Естественно, что на открытом воздухе стальная деталь, покрытая никелем, быстро покроется «сыпью» ржавчины.

У современного автомобиля, к примеру, бампер покрывают двойным слоем (подслой меди, а сверху - хром) и даже тройным (медь - никель - хром). Но и это не спасает деталь от ржавчины, так как по ГОСТу и у тройного покрытия имеется несколько пор на 1 см2. Что делать? Выход - в обработке поверхности покрытия специальными составами, закрывающими поры.

Протереть деталь с никелевым (или другим) покрытием кашицей из окиси магния и воды и сразу же опустить ее на 1...2 мин в 50%-ный раствор соляной кислоты.

После термообработки еще не остывшую деталь опустить в невитаминизированный рыбий жир (лучше старый, непригодный по прямому назначению).

Протереть 2...3 раза отникелированную поверхность детали составом ЛПС (легко проникающей смазкой).

В последних двух случаях излишки жира (смазки) через сутки удаляют с поверхности бензином.

Обработку рыбьим жиром больших поверхностей (бамперов, молдингов автомашин) проводят так. В жаркую погоду протирают их рыбьим жиром два раза с перерывом в 12...14 ч. Затем через 2 суток излишки жира удаляют бензином.

Эффективность такой обработки характеризует следующий пример. Никелированные рыболовные крючки начинают покрываться ржавчиной сразу же после первой рыбалки в море. Обработанные рыбьим жиром те же крючки не корродируют почти весь летний сезон морской ловли.

Хромирование

Химическое хромирование позволяет получить на поверхности металлических деталей покрытие серого цвета, которое после полирования приобретает нужный блеск. Хром хорошо ложится на никелевое покрытие. Наличие фосфора в хроме, полученном химическим путем, значительно увеличивает его твердость. Термическая обработка для хромовых покрытий необходима.

Ниже приводятся проверенные практикой рецепты химического хромирования.

Составы растворов для химического хромирования (г/л)

Фтористый хром - 14, лимоннокислый натрий - 7, уксусная кислота - 10 мл, гипофосфит натрия - 7. Температура раствора - 85...90°С, рН - 8...11, скорость наращивания - 1,0...2,5 мкм/ч.

Фтористый хром - 16, хлористый хром - 1, уксуснокислый натрий - 10, щавелевокислый натрий - 4,5, гипофосфит натрия - 10. Температура раствора - 75...90°С, рН - 4...6, скорость наращивания - 2...2,5 мкм/ч.

Фтористый хром - 17, хлористый хром - 1,2, лимоннокислый натрий - 8,5, гипофосфит натрия - 8,5. Температура раствора - 85...90°С, рН - 8...11, скорость наращивания - 1...2,5 мкм/ч.

Уксуснокислый хром - 30, уксуснокислый никель - 1, гликолевокислый натрий - 40, уксуснокислый натрий - 20, лимоннокислый натрий - 40, уксусная кислота - 14 мл, гидроксид натрия - 14, гипофосфит натрия - 15. Температура раствора - 99°С, рН - 4...6, скорость наращивания - до 2,5 мкм/ч.

Фтористый хром - 5...10, хлористый хром - 5...10, лимоннокислый натрий - 20...30, пирофосфат натрия (замена гипофосфита натрия) - 50...75.
Температура раствора - 100°С, рН - 7,5...9, скорость наращивания - 2...2,5 мкм/ч.

Бороникелирование

Пленка из этого двойного сплава обладает повышенной твердостью (особенно после термообработки), высокой температурой плавления, большой износоустойчивостью и значительной коррозионной стойкостью. Все это позволяет применять такое покрытие в различных ответственных самодельных конструкциях. Ниже приведены рецепты растворов, в которых осуществляют бороникелирование.

Составы растворов для химического бороникелировапия (г/л)

Хлористый никель - 20, гидроксид натрия - 40, аммиак (25%-ный раствор):- 11, борогидрид натрия - 0,7, этилендиамин (98%-ный раствор) - 4,5. Температура раствора - 97°С, скорость наращивания - 10 мкм/ч.

Сернокислый никель - 30, триэтилснтетрамин - 0,9, гидроксид натрия - 40, аммиак (25%-ный раствор) - 13, борогидрид натрия - 1. Температура раствора - 97 С, скорость наращивания - 2,5 мкм/ч.

Хлористый никель - 20, гидроксид натрия - 40, сегнетова соль - 65, аммиак (25%-ный раствор) - 13, борогидрид натрия - 0,7. Температура раствора - 97°С, скорость наращивания - 1,5 мкм/ч.

Едкий натр - 4...40, метабисульфит калия - 1…1,5, виннокислый калийнатрий - 30...35, хлористый никель - 10...30, этилендиамин (50%-ный раствор) - 10...30, борогидрид натрия - 0,6...1,2. Температура раствора - 40...60°С, скорость наращивания - до 30 мкм/ч.

Растворы приготавливают так же, как для никелирования: сначала растворяют все, кроме борогидрида натрия, раствор нагревают и растворяют борогидрид натрия.

Борокобальтирование

Использование данного химического процесса позволяет получить пленку особо большой твердости. Ее используют для ремонта пар трения, где требуется повышенная износостойкость покрытия.

Составы растворов для борокобальтирования (г/л)

Хлористый кобальт - 20, гидроксид натрия - 40, лимоннокислый натрий - 100, этилендиамин - 60, хлористый аммо¬ний - 10, борогидрид натрия - 1. Температура раствора - 60°С, рН - 14, скорость наращивания - 1,5...2,5 мкм/ч.

Уксуснокислый кобальт - 19, ам¬миак (25%-ный раствор) - 250, винно-кислый калий - 56, борогидрид натрия - 8,3. Температура раствора - 50°С, рН - 12,5, скорость наращивания - 3 мкм/ч.

Сернокислый кобальт - 180, борная кислота - 25, диметилборазан - 37. Температура раствора - 18°С, рН - 4, скорость наращивания - 6 мкм/ч.

Хлористый кобальт - 24, этилендиамин - 24, диметилборазан - 3,5. Температура раствора - 70 С, рН - 11, скорость наращивания - 1 мкм/ч.

Раствор приготовляют так же, как и бороникелевые.

Кадмирование

В хозяйстве часто приходится применять крепежные детали, покрытые кадмием. Особенно это касается деталей, которые эксплуатируются под открытым небом.

Отмечено, что кадмиевые покрытия, полученные химическим путем, хорошо сцепляются с основным металлом даже без термообработки.

Хлористый кадмий - 50, этилендиамин - 100. С деталями должен контактировать кадмий (подвеска на кадмиевой проволоке, мелкие детали пересыпают порошковым кадмием). Температура раствора - 65°С, рН - 6...9, скорость наращивания - 4 мкм/ч.

Внимание! Последним в растворе (после нагрева) растворяют этилендиамин.

Меднение

Химическое меднение чаще всего применяют при изготовлении печатных плат для радиоэлектроники, в гальванопластике, для металлизации пластмасс, для двойного покрытия одних металлов другими.

Составы растворов для меднения (г/л)

Сернокислая медь - 10, серная кислота - 10. Температура раствора - 15...25°С, скорость наращивания - 10 мкм/ч.

Виннокислый калий-натрий - 150, сернокислая медь - 30, едкий натр - 80. Температура раствора - 15...25°С, скорость наращивания - 12 мкм/ч.

Сернокислая медь - 10...50, едкий натр - 10...30, сегнетова соль 40...70, формалин (40%-ный раствор) - 15...25. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч.

Сернокислая медь - 8...50, серная кислота - 8...50. Температура раствора - 20°С, скорость наращивания - 8 мкм/ч.

Сернокислая медь - 63, виннокислый калий - 115, углекислый натрий - 143. Температура раствора - 20 С, скорость наращивания - 15 мкм/ч.

Сернокислая медь - 80...100, едкий натр - 80..,100, углекислый натрий - 25...30, хлористый никель - 2...4, сегнетова соль - 150...180, формалин (40%-ный раствор) - 30...35. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч. Этот раствор позволяет получать пленки с небольшим содержанием никеля.

Сернокислая медь - 25...35, гидроксид натрия - 30...40, углекислый натрий - 20-30, трилон Б - 80...90, формалин (40%-ный раствор) - 20...25, роданин - 0,003...0,005, железосинеродистый калий (красная кровяная соль) - 0,1..0,15. Температура раствора - 18...25°С, скорость наращивания - 8 мкм/ч.

Этот раствор отличается большой стабильностью работы по времени и позволяет получить толстые пленки меди.

Для улучшения сцепления пленки с основным металлом применяют термическую обработку такую же, как и для никеля.

Серебрение

Серебрение металлических поверхностей, пожалуй, самый популярный процесс среди умельцев, который они применяют в своей деятельности. Можно привести десятки примеров. Например, восстановление слоя серебра на мельхиоровых столовых приборах, серебрение самоваров и других предметов быта.

Для чеканщиков серебрения вместе с химическим окрашиванием металлических поверхностей (о нем будет сказано ниже) - способ увеличения художественной ценности чеканных картин. Представьте себе отчеканенного древнего воина, у которого посеребрена кольчуга и шлем.

Сам процесс химического серебрения можно провести с помощью растворов и паст. Последнее предпочтительнее при обработке больших поверхностей (например, при серебрении самоваров или деталей крупных чеканных картин).

Состав растворов для серебрения (г/л)

Хлористое серебро - 7,5, железистосинеродистый калий - 120, углекислый калий - 80. Температура рабочего раствора - около 100°С. Время обработки - до получения нужной толщины слоя серебра.

Хлористое серебро - 10, хлористый натрий - 20, кислый виннокислый калий - 20. Обработка - в кипящем растворе.

Хлористое серебро - 20, железистосинеродистый калий - 100, углекислый калий - 100, аммиак (30%-ный раствор) - 100, хлористый натрий - 40. Обработка - в кипящем растворе.

Сначала готовится паста из хлористого серебра - 30 г, винной кислоты - 250 г, хлористого натрия - 1250, и все разводится водой до густоты сметаны. 10...15 г пасты растворяют в 1 л кипящей воды. Обработка - в кипящем растворе.

Детали завешивают в растворы для серебрения на цинковых проволочках (полосках).

Время обработки определяют визуально. Здесь необходимо отметить, что лучше серебрится латунь, нежели медь. На последнюю необходимо нанести довольно толстый слой серебра, чтобы темная медь не просвечивала бы через слой покрытия.

Еще одно замечание. Растворы с солями серебра нельзя долго хранить, так как при этом могут образовываться взрывчатые компоненты. Это же касается всех жидких паст.

Составы паст для серебрения.

В 300 мл теплой воды растворяют 2 г ляпис-карандаша (продается в аптеках, представляет собой смесь азотнокислого серебра и аминокислотного калия, взятых в соотношении 1:2 (по массе). К полученному раствору понемногу добавляют 10%-ный раствор хлористого натрия до прекращения выпадения осадка. Творожистый осадок хлорного серебра отфильтровывают и тщательно промывают в 5...6 водах.

В 100 мл воды растворяют 20 г тиосульфита натрия. В полученный раствор добавляют хлорное серебро до тех пор, пока оно не перестанет растворяться. Раствор фильтруют и добавляют в него зубной порошок до консистенции жидкой сметаны. Этой пастой с помощью ватного тампона натирают (серебрят) деталь.

Ляпис-карандаш - 15, лимонная кислота (пищевая) - 55, хлористый аммоний - 30. Каждый компонент перед смешиванием растирают в порошок. Содержание компонентов - в % (по массе).

Хлористое серебро - 3, хлористый натрий - 3, углекислый натрий - 6, мел - 2. Содержание компонентов - в частях (по массе).

Хлористое серебро - 3, хлористый натрий - 8, виннокислый калий - 8, мел - 4. Содержание компонентов - в частях (по массе).

Азотнокислое серебро - 1, хлористый натрий - 2. Содержание компонентов - в частях (по массе).

Последние четыре пасты применяют следующим образом. Тонкоизмельченные компоненты смешивают. Мокрым тампоном, припудривая его сухой смесью химреактивов, натирают (серебрят) нужную деталь. Смесь все время добавляют, постоянно увлажняя тампон.

При серебрении алюминия и его сплавов детали сначала цинкуют, а затем уже покрывают серебром.

Цинкатную обработку проводят в одном из следующих растворов.

Составы растворов для цинкатной обработки (г/л)

Для алюминия

Едкий натр - 250, окись цинка - 55. Температура раствора - 20°С, время обработки - 3...5 с.

Едкий натр - 120, сернокислый цинк - 40. Температура раствора - 20°С, время обработки - 1,5...2,0 мин. Для получения раствора сначала в одной половине воды растворяют едкий натр, в другой - сернокислый цинк. Затем оба раствора сливают вместе.

Для дюраля

Едкий натр - 10, окись цинка - 5, сегнетова соль - 10. Температура раствора - 20°С, время обработки - 1...2 мин.

После цинкатной обработки детали серебрят в любом из вышеперечисленных растворов. Однако лучшими считаются следующие растворы (г/л).

Азотнокислое серебро - 100, фто¬ристый аммоний - 100. Температура раствора - 20°С.

Фтористое серебро - 100, азотнокислый аммоний - 100. Температура раствора - 20°С.

Лужение

Химическое лужение поверхностей деталей применяют как антикоррозионное покрытие и как предварительный процесс (для алюминия и его сплавов) перед пайкой мягкими припоями. Ниже приведены составы для лужения некоторых металлов.

Составы для лужения (г/л)

Для стали

Хлористое олово (плавленое) - 1, аммиачные квасцы - 15. Лужение ведется в кипящем растворе, скорость наращивания - 5...8 мкм/ч.

Хлористое олово- 10, сернокислый алюминий-аммоний - 300. Лужение ведется в кипящем растворе, скорость наращивания - 5 мкм/ч.

Хлористое олово - 20, сегнетова соль - 10. Температура раствора - 80°С, скоро¬сть наращивания - 3...5 мкм/ч.

Хлористое олово - 3...4, сегнетова соль - до насыщения. Температура раствора - 90...100°С, скорость наращивания - 4...7 мкм/ч.

Для меди и ее сплавов

Хлористое олово - 1, виннокислый калий- 10. Лужение ведется в кипящем растворе, скорость наращивания - 10 мкм/ч.

Хлористое олово - 20, молочнокислый натрий - 200. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч.

Двухлористое олово - 8, тиомочевина - 40...45, серная кислота - 30...40. Температура раствора - 20°С, скорость наращивания - 15 мкм/ч.

Хлористое олово - 8...20, тиомочевина - 80...90, соляная кислота - 6,5...7,5, хлористый натрий - 70...80. Температура раствора - 50...100°С, скорость наращивания - 8 мкм/ч.

Хлористое олово - 5,5, тиомочевина - 50, винная кислота - 35. Температура раствора - 60...70°С, скорость наращивания - 5...7 мкм/ч.

При лужении деталей из меди и ее сплавов их завешивают на цинковых подвесках. Мелкие детали «припудривают» цинковыми опилками.

Для алюминия и его сплавов

Лужению алюминия и его сплавов предшествуют некоторые дополнительные процессы. Вначале обезжиренные ацетоном или бензином Б-70 детали обрабатывают в течение 5 мин при температуре 70°С следующего состава (г/л): углекислый натрий - 56, фосфорнокислый натрий - 56. Затем детали опускают на 30 с в 50%-ный раствор азотной кислоты, тщательно промывают под струей воды и сразу же помещают в один из растворов (для лужения), приведенных ниже.

Станнат натрия - 30, гидроксид натрия - 20. Температура раствора - 50...60°С, скорость наращивания - 4 мкм/ч.

Станнат натрия - 20...80, пирофосфат калия - 30…120, едкий натр - 1,5..Л,7, щавелевокислый аммоний - 10...20. Температура раствора - 20...40°С, скорость наращивания - 5 мкм/ч.

Удаление металлических покрытий

Обычно этот процесс необходим для удаления некачественных металлических пленок или для очистки какого-либо ре¬ставрируемого металлического изделия.

Все нижеприведенные растворы работают быстрее при повышенных температурах.

Составы растворов для удаления металлических покрытий частями (по объему)

Для стали удаления никеля со стали

Азотная кислота - 2, серная кисло¬та - 1, сернокислое железо (окисное) - 5...10. Температура смеси - 20°С.

Азотная кислота - 8, вода - 2. Температура раствора - 20 С.

Азотная кислота - 7, уксусная кислота (ледяная) - 3. Температура смеси - 30°С.

Для удаления никеля с меди и ее сплавов (г/л)

Нитробензойная кислота - 40…75, серная кислота - 180. Температура раствора - 80...90 С.

Нитробензойная кислота - 35, этилендиамин - 65, тиомочевина - 5...7. Температура раствора - 20...80°С.

Для удаления никеля с алюминия и его сплавов применяют техническую азотную кислоту. Температура кислоты - 50°С.

Для удаления меди со стали

Нитробензойная кислота - 90, диэтилентриамин - 150, хлористый аммоний - 50. Температура раствора - 80°С.

Пиросернокислый натрий - 70, аммиак (25%-ный раствор) - 330. Температура раствора - 60°.

Серная кислота - 50, хромовый ангидрид - 500. Температура раствора - 20°С.

Для удаления меди с алюминия и его сплавов (с цинкатной обработкой)

Хромовый ангидрид - 480, серная кислота - 40. Температура раствора - 20...70°С.

Техническая азотная кислота. Температура раствора - 50°С.

Для удаления серебра со стали

Азотная кислота - 50, серная кислота - 850. Температура - 80°С.

Азотная кислота техническая. Температура - 20°С.

Серебро с меди и ее сплавов удаляют азотной кислотой технической. Температура - 20°С.

Хром со стали снимают раствором едкого натра (200 г/л). Температура раствора - 20 С.

Хром с меди и ее сплавов удаляют 10%-ной соляной кислотой. Температура раствора - 20°С.

Цинк со стали снимают 10%-ной соляной кислотой - 200 г/л. Температура раствора - 20°С.

Цинк с меди и ее сплавов удаляют концентрированной серной кислотой. Температура - 20 С.

Кадмий и цинк с любых металлов снимают раствором азотнокислого алюминия (120 г/л). Температура раствора - 20°С.

Олово со стали удаляют раствором, содержащим гидроксид натрия - 120, нитробензойную кислоту - 30. Температура раствора - 20°С.

Олово с меди и ее сплавов снимают в растворе хлорного железа - 75…100, сернокислой меди - 135...160, уксусной кислоты (ледяная) - 175. емпература раствора - 20°С.

Химическое оксидирование и окрашивание металлов

Химическое оксидирование и окрашивание поверхности металлических деталей предназначаются для создания на поверхности деталей антикоррозионного покрытия и усиления декоративности покрытия.

В глубокой древности люди умели уже оксидировать свои поделки, изменяя их цвет (чернение серебра, окраска золота и т.п.), воронить стальные предметы (нагрев стальную деталь до 220...325°С, они смазывали ее конопляным маслом).

Составы растворов для оксидирования и окрашивания стали (г/л)

Заметим, что перед оксидированием деталь шлифуется или полируется, обезжиривается и декапируется.

Черный цвет

Едкий натр - 750, азотнокислый натрий - 175. Температура раствора - 135°С, время обработки - 90 мин. Пленка плотная, блестящая.

Едкий натр - 500, азотнокислый натрий - 500. Температура раствора - 140°С, время обработки - 9 мин. Пленка интенсивная.

Едкий натр - 1500, азотнокислый натрий - 30. Температура раствора - 150°С, время обработки - 10 мин. Пленка матовая.

Едкий натр - 750, азотнокислый на¬трий - 225, азотистокислый натрий - 60. Температура раствора - 140°С, время обработки - 90 мин. Пленка блестящая.

Азотнокислый кальций - 30, ортофосфорная кислота - 1, перекись марганца - 1. Температура раствора - 100°С, время обработки - 45 мин. Пленка матовая.

Все приведенные способы характеризуются высокой рабочей температурой растворов, что, конечно, не позволяет обрабатывать крупногабаритные детали. Однако имеется один «низкотемпературный раствор», пригодный для этого дела (г/л): тиосульфат натрия - 80, хлористый аммоний - 60, ортофосфорная кислота - 7, азотная кислота - 3. Температура раствора - 20°С, время обработки - 60 мин. Пленка черная, матовая.

После оксидирования (чернения) стальных деталей их обрабатывают в течение 15 мин в растворе калиевого хромпика (120 г/л) при температуре 60°С.

Затем детали промывают, сушат и покрывают любым нейтральным машинным маслом.

Голубой цвет

Соляная кислота - 30, хлорное железо - 30, азотнокислая ртуть - 30, этиловый спирт - 120. Температура раствора - 20...25°С, время обработки - до 12 ч.

Гидросернистый натрий - 120, уксуснокислый свинец - 30. Температура раствора - 90...100°С, время обработки - 20...30 мин.

Синий цвет

Уксуснокислый свинец - 15...20, тиосульфат натрия - 60, уксусная кислота (ледяная) - 15...30. Температура раствора - 80°С. Время обработки зависит от интенсивности окраски.

Составы растворов для оксидирования и окрашивания меди (г/л)

Синевато-черные цвета

Едкий натр - 600...650, азотнокислый натрий - 100...200. Температура раствора - 140°С, время обработки - 2ч.

Едкий натр - 550, азотистокислый натрий - 150...200. Температура раствора - 135...140°С, время обработки- 15...40 мин.

Едкий натр - 700...800, азотнокислый натрий - 200...250, азотистокислый натрий -50...70. Температура раствора - 140...150°С, время обработки - 15...60 мин.

Едкий натр - 50...60, персульфат калия - 14…16. Температура раствора - 60...65 С, время обработки - 5...8 мин.

Сернистый калий - 150. Температура раствора - 30°С, время обработки - 5...7 мин.

Кроме вышеперечисленных, применяют раствор так называемой серной печени. Получают серную печень, сплавляя в железной банке в течение 10...15 мин (при помешивании) 1 часть (по массе) серы с 2 частями углекислого калия (поташа). Последний можно заменить тем же количеством углекислого натрия или едкого натра.

Стеклообразную массу серной печени выливают на железный лист, остужают и дробят до порошка. Хранят серную печень в герметичной посуде.

Раствор серной печени готовят в эмалированной посуде из расчета 30...150 г/л, температура раствора - 25...100°С, время обработки определяется визуально.

Раствором серной печени, кроме меди, можно хорошо почернить серебро и удовлетворительно - сталь.

Зеленый цвет

Азотнокислая медь - 200, аммиак (25%-ный раствор) - 300, хлористый аммоний - 400, уксуснокислый натрий - 400. Температура раствора - 15...25°С. Интенсивность окраски определяют визуально.

Коричневый цвет

Хлористый калий - 45, сернокислый никель - 20, сернокислая медь - 100. Температура раствора - 90...100°С, интенсивность окраски определяют визуально.

Буровато-желтый цвет

Едкий натр - 50, персульфат калия - 8. Температура раствора - 100°С, время обработки - 5...20 мин.

Голубой цвет

Тиосульфат натрия - 160, уксуснокислый свинец - 40. Температура раствора - 40…100°С, время обработки - до 10 мин.

Составы для оксидирования и окрашивания латуни (г/л)

Черный цвет

Углекислая медь - 200, аммиак (25%-ный раствор) - 100. Температура раствора - 30...40°С, время обработки - 2...5 мин.

Двууглекислая медь - 60, аммиак (25%-ный раствор) - 500, латунь (опилки) - 0,5. Температура раствора - 60...80°С, время обработки - до 30 мин.

Коричневый цвет

Хлористый калий - 45, сернокислый никель - 20, сернокислая медь - 105. Температура раствора - 90...100°С, время обработки - до 10 мин.

Сернокислая медь - 50, тиосульфат натрия - 50. Температура раствора - 60...80°С, время обработки - до 20 мин.

Сернокислый натрий - 100. Температура раствора - 70°С, время обработки - до 20 мин.

Сернокислая медь - 50, марганцовокислый калий - 5. Температура раствора - 18...25°С, время обработки - до 60 мин.

Голубой цвет

Уксуснокислый свинец - 20, тиосульфат натрия - 60, уксусная кислота (эссенция) - 30. Температура раствора - 80°С, время обработки - 7 мин.

3еленый цвет

Сернокислый никель-аммоний - 60, тиосульфат натрия - 60. Температура раствора - 70...75°С, время обработки - до 20 мин.

Азотнокислая медь - 200, аммиак (25%-ный раствор) - 300, хлористый аммоний - 400, уксуснокислый натрий - 400. Температура раствора - 20°С, время обработки - до 60 мин.

Составы для оксидирования и окрашивания бронзы (г/л)

Зеленый цвет

Хлористый аммоний - 30, 5%-ная уксусная кислота - 15, среднеуксусная соль меди - 5. Температура раствора - 25...40°С. Здесь и далее интенсивность окраски бронзы определяют визуально.

Хлористый аммоний - 16, кислый щавелевокислый калий - 4, 5%-ная уксусная кислота - 1. Температура раствора - 25...60°С.

Азотнокислая медь - 10, хлористый аммоний - 10, хлористый цинк - 10. Температура раствора - 18...25°С.

Желто-зеленый цвет

Азотнокислая медь - 200, хлористый натрий - 20. Температура раствора - 25°С.

От синего до желто-зеленого цвета

В зависимости от времени обработки удается получить цвета от синего до желто-зеленого в растворе, содержащем углекислый аммоний - 250, хлористый аммоний - 250. Температура раствора - 18...25°С.

Патинирование (придание вида старой бронзы) проводят в таком растворе: серная печень - 25, аммиак (25%-ный раствор) - 10. Температура раствора - 18...25°С.

Составы для оксидирования и окрашивания серебра (г/л)

Черный цвет

Серная печень - 20...80. Температура раствора - 60.,.70°С. Здесь и далее интенсивность окраски определяют визуально.

Углекислый аммоний - 10, сернистый калий - 25. Температура раствора - 40...60°С.

Сернокислый калий - 10. Температура раствора - 60°С.

Сернокислая медь - 2, азотнокислый аммоний - 1, аммиак (5%-ный раствор) - 2, уксусная кислота (эссенция) - 10. Температура раствора - 25...40°С. Содержание компонентов в этом растворе дано в частях (по массе).

Коричневый цвет

Раствор сернокислого аммония - 20 г/л. Температура раствора - 60...80°С.

Сернокислая медь - 10, аммиак (5%-ный раствор) - 5, уксусная кислота - 100. Температура раствора - 30...60°С. Содержание компонентов в растворе - в частях (по массе).

Сернокислая медь - 100, 5%-ная уксусная кислота - 100, хлористый аммоний - 5. Температура раствора - 40...60°С. Содержание компонентов в растворе - в частях (по массе).

Сернокислая медь - 20, азотнокислый калий - 10, хлористый аммоний - 20, 5%-ная уксусная кислота - 100. Температура раствора - 25...40°С. Содержание компонентов в растворе - в частях (по массе).

Голубой цвет

Серная печень - 1,5, углекислый аммоний - 10. Температура раствора - 60°С.

Серная печень - 15, хлористый аммоний - 40. Температура раствора - 40...60°С.

Зеленый цвет

Йод - 100, соляная кислота - 300. Температура раствора - 20°С.

Йод - 11,5, йодистый калий - 11,5. Температура раствора - 20°С.

Внимание! При окрашивании серебра в зеленый цвет необходимо работать в темноте!

Состав для оксидирования и окраски никеля (г/л)

Никель можно окрасить только в черный цвет. Раствор (г/л) содержит: персульфат аммония - 200, сернокислый натрий - 100, сернокислое железо - 9, роданистый аммоний - 6. Температура раствора - 20...25°С, время обработки - 1-2 мин.

Составы для оксидирования алюминия и его сплавов (г/л)

Черный цвет

Молибденовокислый аммоний - 10...20, хлористый аммоний - 5...15. Температура раствора - 90...100°С, время обработки - 2...10 мин.

Серый цвет

Трехокись мышьяка - 70...75, углекислый натрий - 70...75. Температура раствора - кипение, время обработки - 1...2 мин.

Зеленый цвет

Ортофосфорная кислота - 40...50, кислый фтористый калий - 3...5, хромовый ангидрид- 5...7. Температура раствора - 20...40 С, время обработки - 5...7 мин.

Оранжевый цвет

Хромовый ангидрид - 3...5, фтор-силикат натрия - 3...5. Температура раствора - 20...40°С, время обработки - 8...10 мин.

Желто-коричневый цвет

Углекислый натрий - 40...50, хро¬овокислый натрий - 10...15, едкий натр - 2...2,5. Температура раствора - 80...100°С, время обработки - 3...20 мин.

Защитные составы

Часто умельцу требуется обработать (окрасить, покрыть другим металлом и т.п.) только часть поделки, а остальную поверхность оставить без изменения.
Для этого поверхность, которую не надо покрывать, закрашивают защитным составом, который препятствует образованию той или иной пленки.

Наиболее доступные, но нетермостойкие защитные покрытия - воскообразные вещества (воск, стеарин, парафин, церезин), растворенные в скипидаре. Для приготовления такого покрытия обычно смешивают воск и скипидар в соотношении 2:9 (по массе). Приготовляют этот состав следующим образом. В водяной бане расплавляют воск и в него вводят теплый скипидар. Чтобы защитный состав был бы контрастным (его наличие можно бы было четко видеть, контролировать), в состав вводят небольшое количество растворимой в спирте краски темного цвета. Если таковой не имеется, нетрудно ввести в состав небольшое количество темного сапожного крема.

Можно привести более сложный по составу рецепт, % (по массе): парафин - 70, пчелиный воск - 10, канифоль - 10, пековый лак (кузбасслак) - 10. Все составляющие смешивают, расплавляют на малом огне и тщательно перемешивают.

Воскообразные защитные составы наносят в горячем виде кистью или тампоном. Все они рассчитаны на рабочую температуру не выше 70°С.
Несколько лучшей термостойкостью (рабочая температура до 85°С) обладают защитные составы на основе асфальтовых, битумных и пековых лаков. Обычно их разжижают скипидаром в соотношении 1:1 (по массе). Холодный состав наносят на поверхность детали кистью или тампоном. Время высыхания - 12...16 ч.

Перхлорвиниловые краски, лаки и эмали выдерживают температуру до 95°С, масляно-битумные лаки и эмали, асфальтово-масляные и бакелитовые лаки-до 120°С.

Наиболее кислотостойким защитным составом является смесь клея 88Н (или «Момент») и наполнителя (фарфоровая мука, тальк, каолин, окись хрома), взятых в соотношении: 1:1 (по массе). Необходимую вязкость получают добавлением к смеси растворителя, состоящего из 2 ча¬стей (по объему) бензина Б-70 и 1 части этилацетата (или бутилацетата). Рабочая, температура такого защитного состава - до 150 С.

Хороший защитный состав - эпоксидный лак (или шпаклевка). Рабочая температура - до 160°С.

В процессе эксплуатации материалы подвержены физическому износу. Для восстановления свойств металла используют многочисленные способы защиты. Одним из самых эффективных методов защиты является никелирование материалов.

Для нанесения никеля в домашних условиях используют способы химического и электролитического никелирования.

Что называют никелированием

Никелированием называют процесс нанесения тонкого никелевого покрытия на поверхность материала. Никелевый слой принимают равным 1–50 мкм.

Слой никеля используется для повышения антикоррозийных и износостойких свойств материалов. Довольно часто такое покрытие имеет защитно-декоративное значение.

Никелирование используется для обработки стали и сплавов цветных металлов. Тонкий слой никеля используется для защиты изделий из марганца, титана, вольфрама, молибдена и сплавов на их основе.

Разработаны и успешно внедрены способы нанесения никелевого защитного покрытия на керамику, пластик, фарфор, стекло и другие неметаллические поверхности.

Виды никелирования

Никелирование в простых домашних условиях проводят двумя способами:

  • электролитическим;
  • химическим.

Выбор способа зависит от структуры и формы материала.

При электролитическом способе используются вещества, частично или полностью состоящие из ионов и обладающие ионной проводимостью. Никелевое покрытие наносят за счет электрохимических свойств этих веществ. Наибольшее распространение получили электролиты сернокислого натрия и хрома.

В зависимости от степени отражения покрытия различают никелирование:

Функции электролитического никелирования

  • матовое;
  • блестящее.

Для нанесения матового покрытия используются электролиты без добавок. Изделия с матовым оттенком не имеют металлического блеска.

Блестящее никелирование получают путем добавления в электролит специальных блескообразователей на основе хлорамина, пропаргилового спирта, бепзосульфамида и других окислителей.

Наилучшая защита никелевого покрытия достигается при минимальной пористости защитного слоя. С этой целью производят его омеднение либо используют многослойную структуру материала.

К сведению. При одинаковой толщине многослойные покрытия в несколько раз надёжнее однослойных материалов.

Наиболее распространёнными примерами многослойных материалов являются медно-никелево-хромовые покрытия.

Основными недостатками электролитического никелирования являются:

  • высокая степень пористости;
  • неравномерность осаждения никеля;
  • сложность обработки поверхностей со сложной формой.

Основой метода служит свойство ионов никеля восстанавливаться в жидкой среде. С этой целью используют гипофосфит натрия или другие химические реактивы. Химический способ позволяет обрабатывать изделия со сложной формой поверхности.

Недостатком способа является относительная дороговизна сухих реактивов, используемых для приготовления водных химических растворов.

Проведение электролитического никелирования дома

Электролитическое (гальваническое) никелирование деталей проводят двумя способами:

  • погружением деталей в электролит;
  • без погружения деталей в электролит.

Первый способ используют при обработке небольших по размеру деталей. Второй способ используют при обработке больших и тяжелых предметов.

Перед никелированием выполняют процесс омеднения металла.

Метод с погружением в электролит

По первому способу поверхность изделия шлифуют наждачной бумагой для снятия оксидной пленки. Затем образец промывают в теплой воде. После этого его обрабатывают содовым раствором и вновь промывают в теплой чистой воде.

Затем в стеклянную или фарфоровую посуду помещают две тонкие медные пластины. Пластины играют роль анодов. Их ставят в вертикальном положении, параллельно друг другу.

Изделие помещают между этими двумя пластинами. Для этого образец подвешивают с помощью проволоки. Проволоку обоими концами прикрепляют к пластинам.

В посуду добавляют водный раствор электролита со следующим составом:

  • дистиллированная вода;
  • 20%-ный медный купорос;
  • 2%-ная серная кислота.

Медные пластины подключают к источнику электроснабжения. Величину напряжения определяют из расчета 15–20 мА на 1 см2 поверхности материала.

К сведению. Никелевый электролит чувствителен к изменениям кислотности. Для поддержания уровня кислотности используют буферные соединения на основе борной кислоты.

В растворе электролита хлорид меди диссоциирует (распадается) на составляющие компоненты. Ионы смещаются к катоду и превращаются в нейтральные атомы. Ионы хлора окисляются у анода.

При пропускании тока через электролит ионы меди переходят в раствор. Из раствора медь оседает на катоде в виде нейтральных атомов. Примеси остаются на дне посуды. Чистота полученной меди составляет почти 100%.

Через 30 минут на детали образуется тонкий слой меди. Воздействие электрического тока вызывает увеличение толщины медного слоя. Чем больше толщина слоя, тем меньшее количество пор остается на обрабатываемой поверхности.

Метод без погружения деталей в электролит

Гальваническое никелирование больших по размеру деталей производят без погружения их в электролит. Для этого используют кисточку из распущенных медных проволок. В качестве кисточки часто используют очищенный от изоляции многожильный медный кабель.

Увеличением напыляемого медного слоя добиваются устранения пористости поверхности образца.

Процесс осаждения никеля проводят аналогично процессу омеднения поверхности. Для этого в емкость добавляют электролит. В состав электролита входят следующие химические реагенты, г/л:

  • раствор сернокислого натрия – 310;
  • раствор хлористого никеля – 65;
  • ортоборная кислота – 45;
  • 1,4-бутандиол – 0,15;
  • орто-сульфобензимид (сахарин) – 2,0;
  • каолин (известь) – 1,0.

В электролит опускают тонкие никелевые пластины. Они играют роль анодов. Между ними помещают изделие. Концы пластин подключают к клемме источника питания с положительным зарядом. Корпус детали присоединяют к отрицательному полюсу.

Для регулирования величины тока используют реостат. Контроль величины подаваемого электрического тока проводят с помощью миллиамперметра. Величина подаваемого тока не должна превышать 6 В. Осаждение никеля проводят при температуре около 50°С и плотности электротока 4–5 А/ дм2. Продолжительность процесса – 3 мин.

К сведению. Никелевое покрытие без подложки имеет довольно слабое сцепление с поверхностью. С целью повышения адгезии используют термическую обработку изделия при температуре 450 градусов.

Завершающий этап обработки детали

Обработанную деталь промывают под потоком чистой теплой воды и подвергают сушке.

Никелированное покрытие обладает матовым оттенком. Для придания блеска деталь полируют.

Никелевые покрытия с дефектами удаляют с помощью анодного растворения в электролите. Для этого в состав электролита включают серную кислоту. Химическую плотность кислоты принимают равной 1,2-2,8 кг/м3. Процесс снятия слоя никеля проводят при температуре 20-25° С и анодной плотности электротока 5 А/дм2.

Проведение химического никелирования дома

Химический способ никелирования в домашних условиях проводят с помощью рабочих растворов. В зависимости от количества сухих реагентов, скорость увеличения никелевого слоя составляет 80 мкм/ч и более.

В состав рабочего раствора входят следующие реагенты, г/л:

  • никелевый купорос (порошок сернокислого никеля) – 20;
  • галенит (порошок сульфида свинца) – 20;
  • ацетат натрия – 15;
  • раствор гипофосфита натрия – 25.

Рабочая температура химического раствора– 90°С. При удалении свинцового реагента скорость реакции снижается до 50 мкм/ч и менее.

При достижении рабочей температуры, в емкость с раствором опускают обрабатываемую деталь. Перед проведением никелирования покрытие очищают и обезжиривают.

Изделие выдерживают в рабочем растворе на протяжении 1 часа. По мере испарения добавляют дистиллированную воду.

По завершении процесса деталь вынимают и промывают в теплой воде. После ополаскивания изделие подвергают тщательной сушке. При необходимости тщательно полируют.

Увеличение срока службы никелевого покрытия

Никелевое покрытие может быть подвержено сплошной поверхностной коррозии. Процесс коррозии проявляется только в начальный период. По мере увеличения температуры рабочего раствора, поверхностная коррозия проникает вглубь материала. Затем этот процесс замедляется и полностью прекращается.

Для увеличения срока службы никелевого покрытия используют технологию омеднения. Омеднение позволяет устранить и незначительные дефекты поверхности. Нанесение меди в качестве подложки обеспечивает надежность и долговечность никелевой защиты.

Пористость медного покрытия вызывает разрушение защитного слоя и уменьшает срок службы готового изделия. Металл подложки подвергается коррозии с последующим отслаиванием защитного слоя.

Чаще всего процессам коррозии подвергаются изделия с однослойным защитным покрытием. Многослойные детали подвергаются воздействию вредных факторов в меньшей степени.

Для защиты изделий от повреждения проводят ряд дополнительных мероприятий. Используют специальные добавки, которыми закрывают поры.

К сведению. Для предотвращения потери твердости никелирование стали проводят при температуре 250-300ºС.

Дополнительная обработка деталей для продления срока службы

Никелирование на дому проводят с использованием следующих способов:

  • Сухой реактив оксида магния смешивают с водой до кашеобразного состояния. Полученной массой тщательно обрабатывают деталь и погружают ее на несколько минут в 50%-ную соляную либо серную кислоту.
  • Рабочую поверхность протирают проникающей смазкой. Затем изделие погружают в очищенный рыбий жир. Излишки жира через сутки удаляют с помощью бензина или других растворителей.
  • Большие по размеру детали обрабатывают рыбьим жиром за два прохода. Промежуток между обработками должен составлять не менее 12 часов. Через два дня излишки рабьего жира удаляют.

Использование сплавов никеля с другими металлами способно улучшить физико-химические свойства никеля.

Алюминий способствует повышению электрического сопротивления и коррозионной стойкости никеля.

Вольфрам, молибден и титан увеличивают его термостойкость.

Добавление хрома приводит к повышению стойкости никелевого покрытия в окислительных и восстановительных растворах.

Медь увеличивает сопротивляемость никеля действию различных кислот.