С помощью гидравлического расчета можно правильно подобрать диаметры и длину труб, правильно и быстро сбалансировать систему с помощью радиаторных клапанов. Результаты этого расчета также помогут правильно подобрать циркуляционный насос.

В результате гидравлического расчета необходимо получить следующие данные:

m - расход теплоносителя для всей системы отопления, кг/с;

ΔP - потери напора в системе отопления;

ΔP 1 , ΔP 2 ... ΔP n , - потери напора от котла (насоса) до каждого радиатора (от первого до n-го);

Расход теплоносителя

Расход теплоносителя рассчитывается по формуле:

Cp - удельная теплоемкость воды, кДж/(кг*град.C); для упрощенных расчетов принимаем равной 4,19 кДж/(кг*град.C)

ΔPt - разность температур на входе и выходе; обычно берем подачу и обратку котла

Калькулятор расхода теплоносителя (только для воды)

Q = кВт; Δt = o C; m = л/с

Точно также можно посчитать расход теплоносителя на любом участке трубы. Участки выбираются так, чтобы в трубе была одинаковая скорость воды. Таким образом, разбиение на участки происходит до тройника, либо до редукции. Нужно просуммировать по мощности все радиаторы, к которым течет теплоноситель через каждый участок трубы. Потом подставить значение в формулу выше. Эти расчеты необходимо сделать для труб перед каждым радиатором.

Скорость теплоносителя

Затем, используя полученные значения расхода теплоносителя, необходимо для каждого участка труб перед радиаторами вычислить скорость движения воды в трубах по формуле :

где V - скорость движения теплоносителя, м/с;

m - расход теплоносителя через участок трубы, кг/с

ρ - плотность воды, кг/куб.м. можно принять равной 1000 кг/куб.м.

f - площадь поперечного сечения трубы, кв.м. можно посчитать по формуле: π * r 2 , где r - внутренний диаметр, деленный на 2

Калькулятор скорости теплоносителя

m = л/с; труба мм на мм; V = м/с

Потери напора в трубе

ΔPp тр = R * L,

ΔPp тр - потеря напора в трубе на трение, Па;

R - удельные потери на трение в трубе, Па/м; в справочной литературе производителя трубы

L - длина участка, м;

Потери напора на местных сопротивлениях

Местные сопротивления на участке труб - это сопротивление на фитингах, арматуре, оборудовании и т.п. Потери напора на местных сопротивлениях рассчитываются по формуле :

где Δp м.с. - потери напора на местных сопротивлениях, Па;

Σξ - сумма коэффициентов местных сопротивлений на участке; коэффициенты местных сопротивлений указываются производителем для каждого фитинга

V - скорость теплоносителя в трубопроводе, м/с;

ρ - плотность теплоносителя, кг/м 3 .

Итоги гидравлического расчета

В итоге необходимо просуммировать сопротивления всех участков до каждого радиатора и сравнить с контрольными значениями. Для того, чтобы насос, встроенный в , обеспечил теплом все радиаторы, потери напора на самой длинной ветке не должны превышать 20000 Па. Скорость движения теплоносителя на любом участке должна быть в диапазоне 0,25 - 1,5 м/с. При скорости выше 1,5 м/с в трубах может появиться шум, а минимальная скорость в 0,25 м/с рекомендуется по во избежание завоздушивания труб.

Для того, чтобы выдержать вышеуказанные условия, достаточно правильно подобрать диаметры труб. Это можно сделать по таблице.

В ней указана суммарная мощность радиаторов, которые труба обеспечивает теплом.

Быстрый подбор диаметров труб по таблице

Для домов площадью до 250 кв.м. при условии, что стоит насос 6-ка и радиаторные термоклапаны, можно не делать полный гидравлический расчет. Можно подобрать диаметры по таблице ниже. На коротких участках можно немного превысить мощность. Расчеты произведены для теплоносителя Δt=10 o C и v=0,5м/с.

Труба Мощность радиаторов, кВт
Труба 14х2 мм 1.6
Труба 16х2 мм 2,4
Труба 16х2,2 мм 2,2
Труба 18х2 мм 3,23
Труба 20х2 мм 4,2
Труба 20х2,8 мм 3,4
Труба 25х3,5 мм 5,3
Труба 26х3 мм 6,6
Труба 32х3 мм 11,1
Труба 32х4,4 мм 8,9
Труба 40х5,5 мм 13,8

Обсудить эту статью, оставить отзыв в

Методика расчета теплообменных аппаратов

Конструкции теплообменных аппаратов весьма разнообразны, однако существует общая методика теплотехнических расчетов, которую можно применять для частных расчетов в зависимости от имеющихся исходных данных.

Существуют два вида теплотехнических расчетов теплообменных аппаратов: конструкторский (проектный) и поверочный.

Конструкторский расчет производится при проектировании теплообменного аппарата, когда заданы расходы теплоносителей и их параметры. Цель конструкторского расчета определение поверхности теплообмена и конструктивных размеров выбранного аппарата.

Поверочный расчет выполняется для выявления возможности использования имеющихся или стандартных теплообменных аппаратов для тех технологических процессов, в которых используется данный аппарат. При поверочном расчете заданы размеры аппарата и условия его работы, а неизвестной величиной является производительность теплообменного аппарата (фактическая). Поверочный расчет производят для оценки работы аппарата при режимах, отличных от номинальных. Таким. образом, целью поверочного расчета является выбор условий, обеспечивающих оптимальный режим работы аппарата.

Конструкторский расчет состоит из теплового (теплотехнического), гидравлического и механического расчетов.

Последовательность конструкторского расчета . Для выполнения расчета должно быть задано: 1) тип теплообменного аппарата (змеевиковый, кожухотрубчатый, труба в трубе, спиральный и др.); 2) наименование нагреваемого и охлаждаемого теплоносителей (жидкость, пар или газ); 3) производительность теплообменного аппарата (количество одного из теплоносителей, кг/с); 4) начальные и конечные температуры теплоносителей.

Требуется определить: 1) физические параметры и скорости движения теплоносителей; 2) расход нагревающего или охлаждающего теплоносителя на основании теплового баланса; 3) движущую силу процесса, т.е. среднюю разность температур; 4) коэффициенты теплоотдачи и теплопередачи; 5) поверхность теплопередачи; 6) конструктивные размеры аппарата: длину, диаметр и число витков змеевика, длину, число труб и диаметр кожуха в кожухотрубчатом аппарате, число витков и диаметр корпуса в спиральном теплообменнике и др.; 7) диаметры штуцеров для входа и выхода теплоносителей.

Теплопередача между теплоносителями существенно изменяется в зависимости от физических свойств и параметров теплообменивающихся сред, а также от гидродинамических условий движения теплоносителей.

В задании на проектирование заданы рабочие среды (теплоносители), начальные и конечные их температуры. Нужно определить среднюю температуру каждой среды и при этой температуре найти по справочным таблицам значения их физических параметров.


Среднюю температуру среды можно приближенно определить как среднее арифметическое из начальной t н и конечной t к температур.

Основными физическими параметрами рабочих сред являются: плотность, вязкость, удельная теплоемкость, коэффициент теплопроводности, температура кипения, скрытая теплота испарения или конденсации и др.

Эти параметры представлены в виде таблиц, диаграмм, монограмм в справочниках .

При конструировании теплообменной аппаратуры надо стремиться к созданию таких скоростей потоков теплоносителей (их рабочих сред), при которых коэффициенты теплоотдачи и гидравлические сопротивления были бы экономически выгодными.

Выбор целесообразной скорости имеет большое значение для хорошей работы теплообменного аппарата, так как с увеличением скорости значительно возрастают коэффициенты теплоотдачи и уменьшается поверхность теплообмена, т.е. аппарат имеет меньшие конструктивные размеры. Одновременно с повышением скорости увеличивается гидравлическое сопротивление аппарата, т.е. расход электроэнергии на привод насоса, а также опасность гидравлического удара и вибрации труб. Минимальное значение скорости определяется достижением турбулентного движения потока {для легко подвижных, маловязких жидкостей критерий Рейнольдса Rе > 10000).

Средняя скорость движения среды определяется из уравнений объемного и массового расходов:

М/с; , кг/(м 2 с), (9.1)

где – средняя линейная скорость, м/с; V – объемный рас ход, м 3 /с; S – площадь сечения потока, м 2 ; – средняя массовая скорость, кг/(м 2 /с); G – массовый расход, кг/с.

Зависимость между массовой и линейной скоростью:

, (9.2)

где – плотность среды, кг/м 3 .

Для применяемых диаметров труб (57, 38 и 25 мм) рекомендуется принимать скорость жидкостей практически 1,5 - 2 м/с, не выше 3 м/с, низший предел скорости для большинства жидкостей составляет 0,06 - 0,3 м/с. Скорость, соответствующая Rе = 10000, для маловязких жидкостей в большинстве случаев не превышает 0,2 - 0,3 м/с. Для вязких жидкостей турбулентность потока достигается при значительно больших скоростях, поэтому при расчетах приходится допускать слаботурбулентный или даже ламинарный режим.

Для газов при атмосферном давлении допускаются массовые скорости 15 - 20 кг/(м 2 с), низший предел 2 - 2,5 кг/(м 2 с), а линейные скорости до 25 м/с; для насыщенных паров при конденсации рекомендуется задаваться скоростью до 10 м/с.

Скорости движения рабочих сред в патрубках штуцеров: для насыщенного пара 20 – 30 м/с; для перегретого пара – до 50 м/с; для жидкостей – 1,5 - 3 м/с; для конденсата греющего пара – 1 - 2 м/с.

Журнал «Новости теплоснабжения» № 1, 2005 г., www.ntsn.ru

К.т.н. О.Д. Самарин, доцент, Московский государственный строительный университет

Существующие в настоящее время предложения относительно оптимальной скорости движения воды в трубопроводах систем теплоснабжения (до 3 м/с) и допустимых удельных потерях давления R (до 80 Па/м) основаны главным образом на технико-экономических расчетах. Они учитывают, что с ростом скорости уменьшаются сечения трубопроводов и снижается объем теплоизоляции, т.е. сокращаются капиталовложения в устройство сети, но одновременно увеличиваются эксплуатационные затраты на перекачку воды из-за роста гидравлического сопротивления, и наоборот. Тогда оптимальная скорость соответствует минимуму приведенных затрат за расчетный срок амортизации системы.

Однако в условиях рыночной экономики обязательно следует принимать во внимание дисконтирование эксплуатационных издержек Э (руб./год) и капитальных затрат К (руб.). В этом случае формула для вычисления совокупных дисконтированных затрат (СДЗ), при использовании заемных средств, приобретает следующий вид :

В данном случае - коэффициенты дисконтирования капитальных и эксплуатационных затрат, вычисляемые в зависимости от расчетного срока амортизации Т (лет), и нормы дисконта р. Последняя учитывает уровень инфляции и рисков капиталовложений, т.е., в конечном счете, степень нестабильности экономики и характер изменения текущих тарифов, и определяется обычно методом экспертных оценок . В первом приближении величина р соответствует годовому проценту за банковский кредит. На практике ее можно принимать в размере ставки рефинансирования ЦБ РФ. Начиная с 15 января 2004 г., она равна 14% годовых.

Причем заранее неизвестно, что минимум СДЗ с учетом дисконтирования будет соответствовать такому же уровню скорости воды и удельных потерь, которые рекомендуются в литературе . Поэтому целесообразно провести новые расчеты с использованием современного диапазона цен на трубопроводы, теплоизоляцию и электроэнергию. В этом случае, если считать, что трубопроводы функционируют в условиях квадратичного режима сопротивления, и вычислять удельные потери давления по формулам, приведенным в литературе , для оптимальной скорости движения воды можно получить следующую формулу:

Здесь К ти - коэффициент удорожания трубопроводов за счет наличия теплоизоляции. При применении отечественных материалов типа минераловатных матов можно принять К ти = 1,3. Параметр С D представляет собой удельную стоимость одного метра трубопровода (руб./м 2), отнесенную к внутреннему диаметру D (м). Поскольку в прайс-листах обычно указывается цена в рублях за тонну металла С м, пересчет необходимо производить по очевидному соотношению , где - толщина стенки трубопровода (мм), =7,8 т/м 3 - плотность материала трубопроводов. Величина С эл соответствует тарифу на электроэнергию. По данным ОАО «Мосэнерго» на первую половину 2004 г. для коммунальных потребителей С эл = 1,1723 руб./кВтч.

Формула (2) получена из условия d(СДЗ)/dv=0. Определение эксплуатационных затрат производилось с учетом того, что эквивалентная шероховатость стенок трубопроводов равна 0,5 мм , а КПД сетевых насосов составляет около 0,8. Плотность воды p w считалась равной 920 кг/м 3 для характерного диапазона температур в тепловой сети. Кроме того, предполагалось, что циркуляция в сети осуществляется круглогодично, что вполне оправданно, исходя из нужд горячего водоснабжения.

Анализ формулы (1) показывает, что для больших сроков амортизации Т (10 лет и выше), характерных для тепловых сетей, отношение коэффициентов дисконтирования практически равно своему предельному минимальному значению р/100. В этом случае выражение (2) дает наименьшую экономически целесообразную скорость воды, соответствующую условию, когда годовой процент за кредит, взятый на строительство, равен годовой прибыли от снижения эксплуатационных издержек, т.е. при бесконечном сроке окупаемости. При конечном сроке оптимальная скорость будет выше. Но в любом случае эта скорость будет превышать вычисленную без учета дисконтирования, поскольку тогда, как легко убедиться, , а в современных условиях пока получается 1/Т< р/100.

Значения оптимальной скорости воды и соответствующие им целесообразные удельные потери давления, вычисленные по выражению (2) при среднем уровне C D и предельном соотношении , приведены на рис.1. Следует иметь в виду, что в формулу (2) входит величина D, которая заранее неизвестна, поэтому сначала целесообразно задаться средним значением скорости (порядка 1,5 м/с), определить диаметр по заданному расходу воды G (кг/ч), а затем вычислить фактическую скорость и оптимальную скорость по (2) и проверить, будет ли v ф больше, чем v опт. В противном случае следует диаметр уменьшить и повторить расчет. Можно также получить соотношение непосредственно между G и D. Для среднего уровня C D оно приведено на рис. 2.

Таким образом, экономически оптимальная скорость воды в тепловых сетях, вычисленная для условий современной рыночной экономики, в принципе не выходит за пределы, рекомендованные в литературе . Однако, эта скорость меньше зависит от диаметра, чем при соблюдении условия по допустимым удельным потерям, и при малых и средних диаметрах оказываются целесообразными повышенные значения R вплоть до 300 - 400 Па/м. Следовательно, предпочтительнее дополнительно снижать капитальные вложения (в

данном случае - уменьшать сечения и увеличивать скорость), и тем в большей степени, чем выше норма дисконта. Поэтому имеющееся в ряде случаев на практике стремление к сокращению единовременных затрат при устройстве инженерных систем получает теоретическое обоснование.

Литература

1. А.А Ионин и др. Теплоснабжение. Учебник для вузов. - М.: Стройиздат, 1982, 336 с.

2. В.Г.Гагарин. Критерий окупаемости затрат на повышение теплозащиты ограждающих конструкций зданий в различных странах. Сб. докл. конф. НИИСФ, 2001, с. 43 - 63.