Энергоэффективные дома являются предметом разговоров и споров. С одной стороны это эффективно, выгодно в эксплуатации и современно, а с другой - дорого.

Проект энергоэффективного дома, необходимые данные

Энергоэффективность дома зависит от:

  • Пирога кровли, перекрытий и стен и их размеров;
  • Площади светопрозрачных конструкций;
  • Вида систем вентиляции и отопления дома;
  • Формы дома и планировки его помещений;
  • Ориентации здания по сторонам света и его посадка на рельефе.

Данный дом компактен, имеет простую форму, больший процент остекления приходится на южную стену, в то время как западная и восточная стены имеют лишь 2 окна и входную группу. Эта планировка будет энергоэффективной, если грамотно расположить здание на участке.

Система отопления работает от газового котла, предусмотрена приточно-вытяжная система вентиляции. Площади оконных конструкций: 3,62 м2, 3,16 м2, 2,13 м2, 2,07 м2, 1,41 м2.

Представим расчеты трат на отопление для разных вариантов конструкций «пирогов»:

1. «Стандарт»

  • Несущие стены: газоблок (380 мм) с утеплителем из минеральной ваты (60 мм);
  • Пол: пенополистирольный утеплитель (100 мм), уложенный на монолитную плиту (100 мм);
  • Кровля:

2. «Улучшенный»

  • Несущие стены: газоблок (380 мм) с утеплителем из мин.ваты (100 мм);
  • Пол: ППС утеплитель (150 мм), уложенный на монолитную плиту (100 мм);
  • Кровля: стропильная конструкция с укладкой в её нишах минеральной ваты (300 мм);

3. «Энергоэффективный»

  • Несущие стены: газоблок (380 мм) с утеплителем из мин.ваты (150 мм);
  • Пол: ППС утеплитель (200 мм), уложенный на монолитную плиту (100 мм);
  • Кровля: стропильная конструкция с укладкой в её нишах минеральной ваты (300 мм);

Проведем денежное сравнение энергоэффективной и улучшенной конструкции пирогов со стандартной.

Т.е. воспользуемся наиболее простыми и доступными вариантами энергосбережения: вариацией толщины утеплителя, ориентацией здания на участке и приемами архитекторов-дизайнеров.

Влияние ориентации окон на тепловые потери дома:

Принимаем для своих расчетов вариант, когда окна дома выходят на юг.

Дом будет теплее с меньшей площадью окон. В этом расчете мы решили оставить окна, предусмотренные проектом.

Рассчитаем усреднённое необходимое количество газа на отопление.

Расчетный расход газа м3/час

Усредняя потребность в топливе для отопительного котла.

Таким образом, на сезонное отопление дома со стандартным «пирогом» потребуется на 449 м3 больше газа.

Посчитаем, во сколько обойдется отопление коттеджа Z115

Итак, «Энергоэффективный пирог» дешевле «Стандартного» в сезон на 2510,03 руб. и на 17571 руб. за 7 лет.

Можно определить через сколько лет окупиться строительство энергоэффективного варианта Z115 (по сравнению со стандартным), учитывая стоимость утепляющих и сопутствующих материалов. По нашей предварительной оценке энерноэффективный вариант оправдает приблизительно через 40 лет!!!

Но правильно было бы учесть и следующие моменты:

  • Капитальную стоимость инженерного оснащения.

Соблюдая выбранные методы экономии энергии, можно снизить стоимость оборудования:

    • «энергоэффективный» вариант требует наименьшей цены,
    • «улучшенный» вариант потребует среднюю стоимость,
    • «стандартный» - дорогого оборудования.
  • Постоянное удорожание энергетических ресурсов.

Выводы

На наглядном примере расчета мы воспользовались простейшими способами экономии тепловой энергии: приемами архитектуры, ориентацией дома на местности и толщиной утеплителя. Расчет производился без учета современных разработок инженерной мысли, таких как рекуперационная система вентиляции или использование солнечного отопления. Дело в том, что стоимость их намного выше количества тепла, производимого или сэкономленного ими. Если учесть эти факторы, то «энергоэффективный» пирог коттеджа Z115 окупится гораздо позже, чем через 40 лет, поэтому результатами применения этих новшеств смогут пользоваться лишь внуки хозяев дома.

Тем заказчикам, которые решили выбрать энергосберегающие проекты домов, рассчитывая на выгоду от их эксплуатации, мы советуем подумать об окупаемости такой конструкции. Стоит задуматься о целесообразности строительства такого дома в том случае, если срок окупаемости новейших технологий будет равен или больше периода эксплуатации коттеджа.

Современный дом – это в первую очередь дом, в котором затраты энергетических ресурсов оптимизированы, т.е. сведены к минимуму. Такой дом принято называть энергоэффективным. Что прячется под этим понятием, догадаться не трудно, а вот какие именно технологии применяются в процессе строительства таких домов – это уже вопрос, с которым следует разобраться подробнее. Именно этим вопросом мы и займемся в данной статье, в которой вместе с сайтом сайт разберемся, что такое энергоэффективный дом и какие технологии применяются в процессе его строительства.

Энергосберегающие технологии для частного дома фото

Энергоэффективный дом: зачем терять тепло понапрасну

По большому счету, такое понятие как, энергоэффективный жилой дом, в первую очередь призвано решать два основных вопроса: первый – это экономный расход ресурсов и второй – максимально полезное использование этих самых ресурсов. Эти два вопроса не являются взаимоисключающими – как раз наоборот, в энергоэффективном доме они решаются одновременно. Причина простая – невозможно экономить ресурсы, если выработанная благодаря им энергия не сохраняется, а улетучивается в непонятно какое измерение.

Это касается не только тепла в доме, но и многих других систем расходующих ресурсы. О них мы поговорим дальше, а пока ознакомимся с эффективными способами борьбы с потерей тепла в доме. Как таковой способ один – в целом он представляет сбой комплекс мероприятий, который включает в себя следующие моменты.


Кроме того, энергосберегающие технологии для дома предусматривают еще и (процесс минимизирует передачу холода от почвы в стены дома), а также теплоизоляцию крыши. В совокупности все эти технологии (естественно, при их грамотном использовании) способны обеспечить сохранность тепла в доме и снижение затрат на отопление примерно на 40-50 процентов. Следует понимать, что сохранить тепло – значит сэкономить на топливе.

Современный энергосберегающий дом: это не только теплый дом

В понятие энергосберегающих технологий вкладывается не только сохранение тепла в доме – кроме того, это еще и оптимальный расход других ресурсов, необходимых человеку для создания комфортной обстановки в доме.


Кроме того, энергоэффективность дома повышается в несколько раз, если вместо магистральных ресурсов в нем потребляется природная энергия. К примеру, электричество можно вырабатывать с помощью . Воду можно собирать дождевую и после очистки направлять на свои нужды. С помощью солнца и специальных можно даже нагревать воду и применять ее для отопления и горячего водоснабжения Частичный отказ от магистральных ресурсов – это шаг к полной энергонезависимости.

Как контролируются ресурсы в энергоэффективных домах

Любые энергосберегающие технологии позволяют в значительной мере сократить расход ресурсов – это понятно всем. Но вот чего многие люди не понимают, так это того, что контроль над этими технологиями, а вернее над их работой в доме, позволяет сэкономить еще львиную долю ресурсов, которая по своим размерам не такая уж и малая. Речь идет о снижении счетов за оплату ресурсов как минимум на 15-20%. Именно в этом и заключаются все прелести системы « » – тотальный автоматический контроль. Как контролирует умный дом расход ресурсов?


Естественно, внедрение этих энергосберегающих технологий для частного дома потребует немалых финансовых затрат, быстрая окупаемость которых во многих случаях остается под вопросом. Нет, они купаются, но происходит это не так уж и быстро, как хочется. Кроме того, выделить сразу большую сумму на внедрение всех энергосберегающих систем не так уж просто – как вариант, сделать энергоэффективный дом своими руками можно постепенно. В таком случае расходы будут равномерно распределены во времени. Также не следует забывать и о том, что частичное или полное выполнение работ в значительной мере снизит затраты на внедрение этих технологий.

В заключение темы про энергоэффективный дом добавлю еще несколько слов по поводу технологий, предоставляющих энергонезависимость – солнечные панели, солнечные коллекторы, которые предусматривают использование природной энергетики. Срок окупаемости таких систем может быть снижен, если вы заключите договор на поставку электроэнергии в центральные сети. Это возможно благодаря излишкам электроэнергии – днем она накапливается в аккумуляторах, которые, как говорится, не резиновые. После того, как емкости получат полную зарядку, энергию можно перенаправлять в центральные энергетические системы, и за эту энергию вам будут платить. Как вариант, излишки электричества, которые будут у вас в любом случае, можно продавать соседу по более низкой стоимости, чем у центральных систем энергоснабжения.

Энергосберегающий дом

Как с минимальными затратами возвести современный энергосберегающий дом. О том, что современный дом должен быть энергосберегающим, писалось уже неоднократно. Сегодня мы представляем вашему вниманию фоторепортаж и подробное описание строительства такого дома, причем, весьма оригинального с точки зрения, как архитектуры, так и технологии возведения. И самое главное, достаточно недорогого для данного класса домов.

Этот дом, построенный под патронажем фирмы «Rockwool» в подмосковном посёлке Назарьево, отличается весьма высокими показателями энергосбережения при небольшой стоимости. Наверное, поэтому он и получил своё название - Green Balance. Здание построено для обычной российской семьи. При его возведении использованы оригинальные технологические приёмы, которые заслуживают внимания.

Никому не нужно энергосбережение, если дом баснословно дорог и при этом неудобен для проживания. Но к сожалению, многие здания, возводимые в последние годы в связи с модой на энергоэффективность, как раз этим и страдают. Тем не менее, возможно, при всей их некомфортности они позволяют экономить энергию даже лучше, чем дом Green Balance. Происходит это потому, что энергосбережение при проектировании становится самоцелью, а об удобстве будущих владельцев жилища архитектор думает в последнюю очередь. Создавая проект Green Balance, доказали, что проектировать энергоэффективный дом можно и нужно, думая, прежде всего об удобстве эксплуатации, а энергосбережение при этом должно быть лишь одной из составляющих комфорта.

И ещё одно: можно, как говорят архитекторы, «переводить калифорнийскую архитектуру на русские рельсы» - то есть слепо копировать западные проекты. А можно взять лучшее, что есть в них, - эффективность, качество, быстровозводимость и т. п. - и заложить это в проект, учитывающий и чисто российские особенности и традиции. Только тогда получится дом, удобный для проживания и «родной» для его обитателей. В данном проекте удалось воплотить в реальность все эти идеи. Впрочем, судите сами. Дом Green Balance при его высоких теплосберегающих характеристиках и уровне комфорта действительно оказался достаточно недорогим. Это получилось прежде всего благодаря тому, что в его конструкции использовано множество новых разработок, созданных нами именно для данного экспериментального проекта.

Оптимизируем все, от стоимости до планировки

Поскольку владельцы дома - люди далеко не богатые, они попросили, чтобы стоимость 1 м² с отделкой была недорогой.

  • в доме установлены пластиковые окна;
  • на пол уложены ламинат, ковролин и лакированная фанера;
  • белые гипсокартонные стены покрыты фактурной краской, а части деревянного каркаса - лаком;
  • использованы сантехника эконом класса и встроенные в потолок и недорогие светильники;
  • весьма оригинальные лестницы, изготовленные строительным способом, безопасны для детей

То есть дом площадью около 200 м² (без мансарды) обеспечен всем, что нужно для жизни, и при этом достигнут необходимый уровень комфорта. В доме три санузла, две кухни (одна оборудована полностью, вторая - частично), финская баня (правда, пока без купели), четыре изолированные спальни и большое зонированное общественное пространство, включающее зимний сад. Поэтому места здесь хватает и детям, и взрослым, и даже гостям.

Оптимален дом и с точки зрения планировки. Спальня владельцев и две детские находятся на третьем этаже. На втором, куда можно попасть сразу с главного входа, - спальня для родителей хозяев (им трудно подниматься на третий этаж), хозяйская кухня и гостиная. На первом этаже - общественные и технические помещения, баня и ещё одна кухня. Такое расположение исключает хаотичное перемещение жильцов с нижнего этажа на самый верхний: члены семьи весь день могут проводить в общественных зонах первого и второго уровней, а на третий (спальный) подниматься только вечером. Если приехали друзья, они могут расположиться на первом этаже. В том случае, если гостей много или одновременно пришли две разные компании, можно открыть для посещения и второй этаж (при этом в хозяйскую спальню и детские доступ будет по-прежнему ограничен).

Дом не только тёплый, но и светлый : его довольно толстые энергосберегающие стены оптимально сочетаются с большими светопрозрачными конструкциями, создающими ощущение простора. Конечно, при этом сопротивление теплопередаче ограждающих конструкций оказалось несколько неравномерным, но в целом оно сбалансировано и соответствует заданным требованиям: у дома Green Balance данный показатель близок к 7 м² х °С/Вт, что чуть ниже европейских нормативов для пассивных зданий (8-10 м² х °С/Вт). Как этого добились?

Компактно и тепло

Чтобы дом эффективно сберегал энергию, недостаточно заложить в его стены толстый слой утеплителя. Он должен быть компактным. Чем компактнее здание, тем проще сохранять в нём тепло, и к тому же стоить оно будет дешевле. Поясним это утверждение.

Можно построить энергоэффективный одноэтажный дом площадью 200 м², но он получится очень дорогим из-за огромной площади фундамента и стен. Другое дело - трёхэтажное здание той же площади. Оно гораздо более компактно, а следовательно, решить задачу удержания тепла внутри его можно значительно быстрее и дешевле. А фундамент у него будет почти в 3 раза меньше (кстати, стоимость основания составляет 30 — 40 % от общей цены дома). Чтобы сделать фундамент ещё дешевле и одновременно снизить теплопотери, архитекторы применили два оригинальных приёма. Во-первых, поставили дом на плавающую монолитную «утеплённую» плиту, которая одновременно служит основанием пола первого этажа. Благодаря этому под зданием нет «закопанных» в землю массивных конструкций, которые забирают тепло. Во-вторых, заглубили первый этаж на 1 м ниже отметки грунта, создав с одной стороны постройки земляную подсыпку на всю высоту первого этажа. Она позволила решить сразу две задачи: искусственно заглубить основание ниже точки промерзания грунта и устроить главный вход в дом на уровне второго этажа.

Таким образом, первый этаж оказался под землёй, но не полностью, а лишь частично. Это позволило ему остаться полноценным жилым этажом. В той части здания, которая не заглублена в землю, обустроили общественные помещения. Днём свет в них поступает сквозь высокие панорамные окна. В конструкции последних предусмотрена и дверь - через неё можно выйти на примыкающую к дому площадку для отдыха. Там, где стены первого этажа засыпаны землёй, находятся помещения, которым окна не требуются: финская баня, санузел и т. п. Котельная, расположенная в этой части дома, имеет отдельный вход со стеклянной дверью. Теперь, когда мы разобрались с основными, заложенными в проект идеями, рассмотрим, как их воплощали в жизнь на строительной площадке.

Котлован и фундамент

Сначала выполнили разметку участка и выставили так называемые обноски. Затем сняли плодородный слой грунта (он пригодится для ландшафтных работ) и выкопали котлован глубиной 1 м не только под самим домом, но и под «патио» - площадкой, на которую будут выходить окна первого этажа. Грунт не вывозили, а сразу подсыпали на указанные в проекте места. Дно котлована вручную выровняли и закрыли песчаной подушкой толщиной около 10 см.

Основанием дома стала монолитная плита с прямоугольными рёбрами, расположенными в виде сетки. Шаг последней был переменным: под той частью дома, где стены каменные, он меньше, под каркасной - больше. Такая конструкция (она представляет собой ноу-хау архитекторов и на фотографиях подробно не показана) позволяет уравнять давление, которое оказывают на грунт части здания, имеющие различный вес (в данном случае - каменная и каркасная).

Прежде чем приступить к возведению монолитной оребрённой плиты основания, к дону подвели трубы канализации и водопровода (они поселковые), их утеплили и подняли над уровнем будущего пола (а). Чтобы приподнять один ряд дорожной сетки над другим, обычно применяют пластиковые элементы. Для экономии вместо них использовали подручный материал (б)

Под силовые рёбра выкопали траншеи глубиной около 50 см и шириной 30 см. Их полностью засыпали песчано-гравийной смесью (ПГС) толщиной примерно 40 см. ПГС и песок тщательно утрамбовали. Между будущими рёбрами на песчаную подсыпку уложили в несколько слоев гидроизоляцию, а на неё - плиты «Rockwool Флор Баттс» общей толщиной 120 мм и прикрыли их слоем гидроизоляции. Затем в образовавшихся между плитами утеплителя «канавках» создали из арматуры диаметром 12 мм каркас будущих рёбер. После этого по всей площади фундамента уложили в два слоя дорожную сетку из проволоки диаметром 5 мм с ячейками 100 х 100 мм, связав её с арматурой силовых рёбер. Далее в местах расположения стоек силового деревянного каркаса дома к арматуре вертикально присоединили металлические стержни, к которым будут крепиться «башмаки », удерживающие стойки от горизонтального смещения. Наконец из бетона марки М300 отлили плиту с рёбрами сечением 300 х 300 мм и толщиной «стяжки» 80 мм.

Возведение стен подвала

Наружную стену первого этажа, которая впоследствии окажется ниже уровня грунта, изготовили из кирпича, причём весьма оригинальным способом. Вначале торчащую из-под основания гидроизоляцию загнули вверх и герметично приклеили к торцевой поверхности плиты. Затем вдоль контура стены установили лист сотового поликарбоната толщиной 5 мм, закрепив его в вертикальном положении с помощью деревянных стоек, и герметично приклеили к слою гидроизоляции. Таким образом, ещё до возведения самой стены решили проблему её изоляции от поступающей из фунта влаги. Эта изоляция была сплошной- она состояла из одного листа сотового поликарбоната длиной 12 м. Возвести саму дугообразную стену толщиной в полкирпича (она тонкая, так как является не несущей, а служит всего лишь подпорной стенкой для фунта) было, как говорится, делом техники.

Стену «подвала» гидроизолировали с помощью сотового поликарбоната (а); в многослойной внешней стене дома (б) внешнюю (декоративную) и внутреннюю (несущую) стенки через каждые шесть рядов кладки связывали между собой арматурной сеткой (в)

Силовой каркас и стены

Наружные стены здания комбинированные - частично кирпичные, частично каркасные. Почему так? Кирпичные стены из-за своей большой массы обладают довольно значительной теплоёмкостью, иногда даже излишней. Стены каркасного дома имеют минимальную массу и поэтому отличаются невысокой теплоёмкостью. Комбинация двух материалов даёт ряд существенных преимуществ. Во-первых, она позволяет переложить часть нагрузки с каркаса на гораздо более мощные кирпичные конструкции. Во-вторых, даёт возможность уравнять теплоёмкость стен дома в целом (каменная стена будет работать как пассивный аккумулятор). В-третьих, кирпичные стены станут надёжной опорой для бетонных стяжек в ванных комнатах и санузлах.

Деревянный каркас и кирпичные стены возводили параллельно . Сопряжение частей деревянного каркаса с кладкой выполняли через прокладки из утеплителя. Это позволило создать «скользящую посадку», которая и дала возможность нивелировать разницу величин температурного расширения кирпича и дерева.

Каменные стены многослойные: они состоят из двух кирпичных стенок и уложенного между ними слоя утеплителя «Rockwool Венти Баттс» толщиной 100 мм. Толщина внутренней опорной стены- 380 мм (полтора кирпича). Внешняя стенка, выложенная из более дорогого облицовочного кирпича, имеет толщину 120 мм (полкирпича). Деревянные стойки каркаса сечением 150 х 150 мм установили в стальные подпятники. На них закрепили ригели - горизонтальные деревянные балки сечением 200 х 120 мм, которые изготовили на месте, склеивая и скрепляя саморезами доски сечением 200 х 4О мм (балка позволяет перекрывать пролёты до 8 м). Затем, уже опираясь на ригели, создали конструкцию перекрытия (о ней чуть позже).

А где же каркасные стены? Их пока нет. При возведении этого здания использовали практически тот же приём, что и при строительстве многоэтажного дома из монолитного бетона: сначала соорудили несущую «этажерку», а потом опёрли на неё внешние ненесущие ограждения. То есть возведённая силовая каркасная «этажерка» являлась самонесущей конструкцией. Единственное отличие от бетонного аналога в том, что в момент создания её надо было удерживать от боковых колебаний временными раскосами. После того как соорудили кирпичные стены, образующие весьма жёсткую угловую конструкцию, и соединили их с каркасом, именно они стали защищать последний от боковых колебаний. Все временные раскосы сняли.

Решетчатые перекрытия

У перекрытий дома необычная конструкция - решётчатая. Они созданы из устанавливаемых на узкую кромку досок сечением 100 х 40 мм, расположенных с шагом 600 мм в двух перпендикулярных друг другу рядах (по высоте). При этом нижний ряд досок опирается на прикреплённые к стойкам балки-ригели. Снизу к кромкам «решётки» плашмя подшили доски сечением 100 х 20 мм. Сверху на «решётку » уложили настил из ОСП-плит толщиной 8 мм, поверх которого так же, как снизу - «клеткой», - прибили доски 100 х 20 мм, и уже к ним прикрепили сплошной настил пола из ОСП-плит толщиной 18 мм.

Расположенные перпендикулярно друг другу два ряда досок в междуэтажном перекрытии образуют пространственную решётку с размером ячеек 600 * 600 мм (а, б). В готовом виде такое перекрытие представляет собой сплошную решётчатую ферму, способную выдерживать нагрузки до 250 кг/м²

Чтобы обеспечить звуковой комфорт, перекрытие изолировали плитами «Rockwool Акустик Баттс», а сверху на «решётку» (прежде чем создавать настил из ОСП-плит толщиной 8 мм) уложили вспененный фольгированный материал (фольгоизол). Он одновременно служит и «амортизатором» для сплошного настила пола, и отражателем тепла, а также света, если в решётку снизу будет встроен светильник. Следует отметить, что даже при перекрывании пролётов шириной до 8 м толщина перекрытия не превышает 300 мм - клеёные балки-ригели, на которые опирается «решётка», остаются в интерьере и не уменьшают видимую высоту потолков.

И ещё один любопытный момент. Внешний контур решётчатого перекрытия в момент возведения лишь приблизительно совпадает с внешним контуром будущих наружных стен дома. Точные размеры оно приобретает позднее - при создании каркаса обшивки внешних стен, когда края перекрытия опиливают. В решётчатом перекрытии можно выпиливать проёмы произвольной формы, только необходимо укрепить их края. Внутренние перегородки допускается устанавливать в любом месте.

Кровельное перекрытие (а, б) отличается от междуэтажного тем, что его решётку образуют не два, а три ряда стоящих на узкой кромке досок. Эта позволяет усилить несущую способность конструкции и увеличить толщину слоя укладываемого утеплителя (в), что для кровли просто необходимо

«Решётку» кровельного перекрытия создали не из двух, а из трёх рядов стоящих на узкой кромке досок. Поверх неё уложили сплошной настил из ОСП-плит толщиной 12 мм, а на него- рулонный кровельный материал в несколько слоёв. Форма кровельного перекрытия довольно оригинальна- оно односкатное (уклон кровли составляет около 7-10°), но не плоское, а как бы закрученное по спирали.

Кровельное перекрытие тщательно утеплили (а), а затем по нему сделали сплошной настил из ОСП-плит (б), стыки которых герметизировали битумной мастикой

Каркасные стены

Кровельное перекрытие и перекрытие первого этажа по периметру обрезали по заданному проектом контуру. После этого их утеплили, используя плиты «Rockwool Лайт Баттс». Далее к «решёткам» обоих перекрытий с шагом 600 мм вертикально прикрепили доски сечением 100 х 50 мм, создав из них каркас наружных стен. Когда их контур полностью обрисовался, по нему обрезали края перекрытия второго этажа.

Каркас наружных стен создали из досок сечением 100 х 50 им, прикреплённых к силовым «решёткам» перекрытий. Такой необычный приём позволяет возводить стены, произвольные по форме и ушу наклона

Затем в местах, предусмотренных проектом, каркас обшили ОСП- плитами толщиной 9 мм. Плиты прибивали к каркасу, оставляя между ними горизонтальные щели шириной 2 см. Они по замыслу архитекторов должны обеспечивать возможность выхода наружу из влажных помещений или зимнего сада паров воды, попавших в смонтированный на стенах изнутри дома утеплитель. Проникнув сквозь щели во внешнее утепление, эти пары затем смогут выйти из него в атмосферу. В дальнейшем стены были оштукатурены и окрашены.

Внутренние перегородки в доме имеют металлодеревянную каркасную конструкцию (а). Для звукоизоляции внутрь них заложили утеплитель «Rockwool Акустик Баттс», который с обеих сторон прикрыли сначала пароизоляцией, а затем листами гипсокартона (б)

Каркасные стены дома и торцы перекрытий всех этажей изнутри утеплили каменной ватой «Rockwool Лайт Баттс». Утеплитель сверху прикрыли фольгоизолом (его устанавливают фольгой внутрь помещения), создав таким образом пароизоляцию, отражающую тепло (а, б). Поверх неё смонтировали каркас из металлопрофилей, который обшили листами гипсокартона

Светопрозрачные конструкции

ОСП-плиты прибили к каркасу только в местах, предусмотренных проектом. Дело в том, что значительную часть фасада обшили листами сотового поликарбоната толщиной 25 мм, которые с торцов тщательно загерметизировали. В чём плюсы такой отделки? Благодаря применению листов размером 12 х 2 м создаваемые с их помощью «стены» практически не продуваются. И хотя теплосберегающие характеристики поликарбоната толщиной 25 мм практически такие же, как двухкамерного стеклопакета, собранная с его использованием светопрозрачная конструкция значительно теплее, чем остеклённая такой же площади.

В доме использованы и обычные стеклянные окна и двери. Их рамы выполнены из пятикамерного ПВХ-профиля (самый экономичный вариант) и оснащены двухкамерными стеклопакетами, которые изготовлены с применением низкоэмиссионного i-стекла и заполнены инертным газом.

Общественные помещения дома освещают встроенные в потолок светильники (а). Лестницу изготовили на месте, её ступени с одной стороны опёрли на стену (б, в), с другой прикрепили металлоэлементами к мощной балке - косоуру

Чтобы уменьшить теплопотери в зоне примыкания окон к кирпичной стене, их крепили следующим образом. При возведении стен по периметру оконных проёмов оставили пазы сечением 120 х 120 мм, в которые перед монтажом окон вкладывали нарезанные из утеплителя полосы. Окна устанавливали на анкерные пластины, прикрепляемые к кирпичной кладке проёма со стороны помещения. При монтаже утеплитель слегка поджимали, чтобы он, распрямившись после установки окон, сам прикрыл щель между рамой и проёмом. В дальнейшем оконные откосы снаружи оштукатурили.

При наружной отделке утеплённые не только снаружи, но и изнутри (а) каркасные стены дома оштукатурили по армирующей сетке составом Rockfacade, а затем окрасили ярко-оранжевой фасадной краской (б, в)

Система отопления

Несколько необычно организована подача теплоносителя к обогревающим устройствам: он поступает наверх, а затем самотёком расходится по системе отопления. В обычном режиме воду наверх подаёт электронасос, а в отсутствие электроснабжения она направляется туда за счёт так называемой гравитационной циркуляции. Последнюю обеспечивает подающий воду наверх стояк, который состоит не из одной, а из двух труб диаметром 32 мм (клапан, открывающий подачу теплоносителя через вторую трубу, срабатывает, когда в сети исчезает напряжение).

Создавая «тёплые стены», в качестве последнего слоя при утеплении уложили фольгированный материал «Rockwool Lamella Mat» (а). Чтобы полипропиленовые трубы системы не провисали под действием температуры, их поместили в короба из стального оцинкованного профиля (б). На первом этаже и в помещениях санузлов смонтировали водяные тёплые полы (в)

В доме использованы сразу три системы обогрева . Первая - водяные тёплые полы , смонтированные на первом этаже, а также в санузлах. Вторая - конвекторы , установленные под большими светопрозрачными конструкциями. Третья - тёплые стены . Их мы рассмотрим подробно. К этим утеплённым и покрытым фольгой стенам в горизонтальном положении прикрепили стальные профили шириной 27 мм, в которые змейкой уложили полипропиленовые трубы диаметром 20 мм. Поверх последних смонтировали профили металлокаркаса и закрыли их гипсокартоном.

Сердцем системы вентиляции стала рекуперативная приточно-вытяжная установка, размещённая в котельной (а). Воздуховоды системы проложены внутри решётчатых перекрытий. Видимой осталась только труба воздухозабора (б)

«Тёплая стена» передаёт тепло двумя способами - это излучение и конвекция. Лучистый обогрев создаётся в результате того, что трубы нагревают гипсокартон и он, в свою очередь, начинает излучать тепло в помещение.

Дом отапливает котёл мощностью 36 кВт, пока работающий на деревянных брикетах. Когда подведут газ, котёл переведут на это топливо. Отопительный дровяной котёл оснастили дымоходом из сандвич-трубы (а), который проложили в «шахте» с каркасом из металлопрофилей. В ней же смонтирован и стояк «выхлопа» системы вентиляции (б)

Конвективный обогрев возникает потому, что воздух через отверстия в нижней зоне обшивки проникает в пространство за гипсокартоном, где, нагреваясь, постепенно поднимается вверх и выходит в помещения через отверстия в верхней зоне обшивки.

Расчитайте приблизительную стоимость строительства энергоэффективного дома, используя строительный калькулятор .

Что же такое энергоэффективный дом?

 Это дом, в котором:

  • обеспечиваются минимальные потери тепла через ограждающие конструкции за счет увеличения толщины теплоизоляции стен и применения эффективных современных утеплителей
  • применяются окна и наружные двери с высоким сопротивлением теплопередачи
  • обеспечивается высокая герметичность здания и контролируется весь воздухообмен с помощью приточно-вытяжных вентиляционных систем с рекуперацией тепла, что снижает потери тепла при вентиляции помещения
  • Выполнение вышеуказанных условий обеспечивает в доме низкое и сверхнизкое энергопотребление. В Германии хорошими показателями энергоэффективного дома считаются, когда на 1 м² отапливаемой площади в год расходуется не более 1,5…3 литра условного топлива, т.е. не более 15...30 кВт ч/м² в год.

    По теории немецких ученых, в любой местности есть свои специфические (для данной местности) природные возобновляемые источники, которые в случае низкого энергопотребления могут полностью заменить традиционные источники энергоресурсов и обеспечить комфортное проживание в доме.

    Низкое энергопотребление дома дает возможность использовать возобновляемые источники энергии окружающей среды. При этом источники энергии могут быть различных видов: геотермальная энергия Земли, солнечная энергия, энергия ветра, энергия воды. В приморской зоне, например, ветрогенераторы и приливные электростанции . В горной местности - ветрогенераторы и геотермальные системы . В равнинной местности - геотермальные, солнечные установки и т.д. Такое использование окружающей среды является экологически безопасным, обеспечивает сохранность окружающей среды, а самое главное, дает независимость от постоянно растущих цен на энергоресурсы.

    Несмотря на высокую стоимость оборудования, необходимого для получения тепла из возобновляемых источников энергии, оно становится конкурентоспособным традиционному оборудованию, работающему на газе, электричестве, дровах и угле, так как текущие эксплуатационные затраты минимальны и практически не зависят от роста цен. К тому же за последнее время стоимость этого оборудования, которое в недалеком прошлом была фантастической, значительно снизилась и с каждым годом продолжает снижаться.

    Строительство индивидуальных малоэтажных энергоэффективных жилых домов в России

    В настоящее время, индивидуальные малоэтажные энергоэффективные дома для большинства населения России являются несбыточной мечтой. Единичные экземпляры, построенные в последнее время, по стоимости (более 100 тыс. руб./м²) значительно превышают стоимость обычных домов, рассчитанных по действующим в России нормам.

    Специалистам ООО «ИнтерСтрой» была поставлена задача, разработать проект и построить опытный образец энергоэффективного индивидуального малоэтажного дома, по стоимости, не превышающей среднюю стоимость обычного загородного дома (ориентировочно не более 60 тыс. руб./м²).

    В дальнейшем, по итогам мониторинга эксплуатационных свойств строящегося здания, планируется продолжить оптимизацию затрат и снизить стоимость строительства еще на 10-15%. Такое условие необходимо для реализации массового строительства домов такого класса в местности с ограниченными энергоресурсами (отсутствие электричества, газа).

    Предварительный выбор основных архитектурных и технических решений

    До принятия основного варианта «пилотного проекта» индивидуального малоэтажного жилого дома, специалистами ООО «Институт пассивного дома», были проанализированы несколько вариантов планировочных и конструктивных решений, а также сделаны предварительные расчеты для подбора видов утеплителей и их толщин.

    С целью снижения стоимости дома, была принята прямоугольная форма дома в плане, позволившая минимизировать объем наружных стен на единицу площади здания.

    Особое внимание было уделено выбору конструкции наружных стен. В результате сравнения различных материалов (кирпич, пеноблоки, деревянный каркас и т.д.), в качестве несущих и ограждающих конструкций, было решено использовать монолитные железобетонные конструкции. Бетонные стены имеют плотную структуру, что позволяет более качественно выполнить требуемую герметизацию внутреннего объема, необходимого для контроля и управления воздухообменом с целью минимизации тепловых потерь и максимального сохранения тепла (до 80%). Также обеспечивается высокая несущая способность при минимальных толщинах, что существенно снижает объем конструкций и уменьшает стоимость и сроки выполнения работ.

    В качестве утеплителя, среди огромного многообразия материалов представленных на сегодняшний день (жесткие, мягкие, минеральные, синтетические, «задувные» и т.п.), был выбран плитный минераловатный утеплитель нового поколения, производимый компанией «SAINT-GOBAIN» . Кроме того, была достигнута договоренность о совместной разработке с компанией «SAINT-GOBAIN» узлов крепления утеплителя (толщиной 400 мм и более) к бетонной поверхности наружных стен.

    Внешний вид здания

    Основные проектные решения здания

    Архитектурно-планировочные решения

    Архитекторами была принята модульная концепция планировки здания, при использовании которой, можно реализовать примыкание модулей в различных направлениях.

    Модуль представляет квадрат с внутренними размерами 9,6×9,6 метров общей площадью около 90 м². Квадратная форма была принята для снижения материалоемкости наружных дорогостоящих стен из расчета на 1 м² площади.

    Модульная планировка дает возможность строить дома площадью: 90 м², 135 м², 180 м², 225 м², 270 м² и т.д.

    Фундамент

    Фундамент выполнен в виде монолитной железобетонной плиты толщиной 300 мм, cтены подвального этажа выполнены из монолитного железобетона толщиной 150 мм.

    Конструкции стен первого, второго и третьего этажей

    Наружные стены – несущие, выполнены из монолитного железобетона толщиной 150 мм с последующим утеплением минераловатными плитами, с наружной отделкой вентилируемыми фасадами и частично штукатурными фасадами. Внутренние стены, кроме двух простенков лестницы и первого простенка коммуникационной шахты, могут выполняться из любых стеновых материалов по желанию заказчика (кирпич, пазогребневые блоки, ГКЛ и т.п.).

    Перекрытия

    Междуэтажные перекрытия - безбалочные монолитные железобетонные, толщиной 160 мм, с опорой на наружные стены, простенки лестницы и коммуникационной шахты. Монолитное перекрытие с большим пролетом дает возможность архитекторам, при оформлении интерьера, выполнить любую индивидуальную планировку и удовлетворить самые строгие запросы заказчика.

    Кровля

    Кровля принята частично не эксплуатируемой с односкатным радиусным закруглением с внутренним водостоком и частично эксплуатируемой с плоским скатом. Утепление радиусной кровли принято из минераловатных плит «ISOVER» толщиной 600 мм. Утепление плоской кровли – 450 мм экструзивного пенополистирола. Различные решения приняты для того, чтобы показать возможность использования в данном проекте разнообразных видов кровель (как плоских, так и сложных с криволинейным контуром, а также различных видов одно, двух, четырех скатных).

    Тепловая оболочка здания

    Утепление здания начинается с основания под фундаментную плиту утеплителем из экструзивного пенополистирола толщиной 300 мм. Далее осуществляется утепление стен подвала утеплителем XPS толщиной 350 мм. Утепление наружных стен выполнено минераловатными плитами толщиной 400 мм. Для утепления кровли, парапетов и карнизов используются утеплители с малым объемным весом, как плотной структуры, так и неплотной (экструдированный пенополистирол, «ISOVER» и т.п.). Выбор различных материалов теплоизоляции связан с тем, что утеплению подлежат конструкции, работающие в разных условиях (фундамент, стены подвала, наружные стены, кровля).

    Для крепления полужесткого утеплителя на стенах разработаны 2 варианта подсистем вентилируемого и «мокрого» фасада. Одна подсистема состоит из двутавровых балок, выполненных из ОSB, установленных вертикально, с заполнением пространства между фермами утеплителем типа «ISOVER». Вторая - из металлических кронштейнов и деревянных брусков, выполненных в виде каркаса, с заполнением утеплителем типа «ISOVER». Совместно с компанией «Saint-Gobain» продолжаются разработки и других видов унифицированных подсистем с целью их удешевления и улучшения характеристик (для возможности крепления утеплителя толщиной 400 мм, 500 мм и более).

    Наружное остекление и двери

    В связи с тем, что тепловой расчет экспериментального дома производился по стандартам Германии, архитекторам была поставлена сложная задача. При проектировании остекления дома строго учитывалась ориентация дома по сторонам света. Минимальное остекление принято на северной стороне, максимальное - на южной. В жаркое летнее время на фасаде дома предусмотрена система автоматической солнцезащиты. С целью снижения теплопотерь предусмотрен один вход. Применяемые окна и двери должны удовлетворять следующим требованиям проекта: Rо = 1,19 – 1,20 (м² С)/Вт.

    Наружные декоративные элементы фасадов

    Имеются различные технические решения, которые позволяют снять проблемы промерзания через эти элементы. Однако они нередко дороги и использование их в строительстве приведет к излишнему удорожанию. Поэтому в данном проекте элементами отделки фасада являются различные сочетания вентилируемого фасада и наружной фасадной штукатурки. Имеющиеся в настоящее время на строительном рынке разновидности этих материалов позволяют удовлетворить вкус самого требовательного заказчика.

    Умелое сочетание различных видов отделки вентилируемых фасадов, использование различных цветов наружной окраски участков стен, а также применение разных конструкций кровли позволяет архитекторам предложить заказчикам большое разнообразие не похожих друг на друга домов.

    Внутренняя планировка

    Все помещения с максимальным пребыванием людей сосредоточены с южной стороны, где возможно максимальное остекление. Помещения технического и бытового назначения располагаются в основном с северной стороны, где наружное остекление отсутствует или оно минимальное. От помещений с двойным светом решено было отказаться, ввиду значительного ухудшения теплотехнических характеристик здания.

    Инженерное оборудование дома

    Водоснабжение

    На территории участка предусмотрена скважина. Скважина обеспечивает все потребности дома. Автоматика управления насосом и все оборудование для подачи воды находится в колодце, оборудованном над оголовком скважины.

    Внутри здания в подвале предусмотрен узел ввода, оборудованный необходимой запорной арматурой, фильтрами тонкой очистки воды и счетчиками расхода воды.

    Подогрев горячей воды осуществляется совместно с помощью теплового насоса и солнечных коллекторов, а в случае отказа одной из систем – подогрев обеспечивается с помощью резервного источника (в данном проекте – газовый котел).

    В случае поломки насоса, в доме предусмотрен аварийный запас питьевой воды в объеме 1000 литров.

    Водостоки и ливневая канализация

    Кровля состоит из плоской части с площадью около 45 м² и односкатной с переменным уклоном - 75 м². На плоской кровле сток воды осуществляется по уклонам в сторону воронок, расположенных в углах здания. На наклонной кровле сток воды также осуществляется по уклонам к водосточным воронкам, находящимся в самых нижних точках по углам здания.

    Вся отведенная дождевая и талая вода направляется в дренажные колодцы пристенного дренажа дома.

    Возможно применение на плоской кровле внутренних водостоков с накопительной емкостью дождевой воды в подвале или заглубленной емкости в земле (для использования на полив).

    Канализация

    Проектом предусмотрены два вида канализации:

    1. Для подвала предусмотрена напорная канализация с использованием установки СОЛОЛИФТ (для санузла, душевых кабин и трапа сбора воды с пола моечного помещения и сауны) и дренажного насоса (для откачки воды из приямка технического помещения в процессе эксплуатации).

    2. Для остальной части дома предусмотрена самотечная канализация с одним вертикальным стояком в технологической шахте, горизонтальным участком под потолком подвала и выпуском из здания в подвале на высоте 1 м от чистого пола.

    Самотечная канализация выводит бытовые стоки в септик. Септик марки «Тверь», предусмотренный в данном проекте, расположен в 3-х метрах от северной стены дома.

    Отопление

    Изначально в данном проекте ставилась задача использования нетрадиционных, экологически чистых, возобновляемых энергетических источников тепла. Было принято использовать в качестве энергетического источника тепловые насосы (использующие геотермальное тепло Земли) и солнечные коллекторы, использующие энергию Солнца. Вырабатываемое этими установками тепло, по расчетам организации ООО «Компания ЭНСО ИНТЕРНЭШНЛ», достаточно для подогрева воды и обеспечения дома теплом на протяжении всего года. В связи с тем, что теплопотери энергоэффективного дома значительно ниже, чем в обычном доме, то требуемая мощность тепловых установок не превышает 10 кВт.

    Обеспечение получения этой мощности возможно с двух скважин общей глубиной около 200 м (50 Вт с каждого погонного метра скважины на 200 метров = 10 кВт).

    В качестве резервной энергетической установки принят газовый котел (возможны и другие виды энергетических установок: котлы, работающие на дровах, угле, дизельном топливе, электричестве и т.д.).

    Проект отопления с помощью совместной работы теплового насоса и солнечного коллектора выполнен организацией ООО «Компания ЭНСО ИНТЕРНЭШНЛ».

    В данном проекте для отопления и ГВС предложена модульная система TYRRO c геотермальным грунтовым (горизонтальным или вертикальным) теплообменником и функцией «freecooling» в летнее время.

    Солнечные коллекторы предлагается ставить на специальных кронштейнах на плоской кровле с южной или юго-западной стороны здания. Их площадь определяется в процессе проектирования, исходя из архитектурных и инженерных соображений. Солнечное тепло в летнее время будет направлено на подогрев грунта в месте установки грунтового теплообменника, а также на подогрев воды в бассейне и воды для полива растений. В зимнее время часть низкотемпературного тепла будет направлено на подогрев теплового насоса.

    Также предусматривается подогрев воздуха через систему вентиляции в зимнее время, и охлаждение в летнее время. Во время, когда тепловой насос будет нагревать воду, с другой стороны насоса в испарительном контуре (коллектор, находящийся в земле) будет охлаждаться грунт, повышая эффективность охлаждения в режиме «freecooling» .

    Вентиляция

    В настоящем проекте дома предусмотрена принудительная вентиляция с применением приточно-вытяжных вентиляционных установок с рекуперацией тепла. Применение принудительной вентиляции имеет как достоинства, так и недостатки.

    Недостатками этой системы, по сравнению с естественной вентиляцией, являются:

  • постоянная работа вентиляционного оборудования и шум от его работы
  • большие единовременные затраты на оборудование и его последующее сервисное техническое обслуживание
  • необходимость в замене фильтров очистки воздуха
  • Достоинством является - возможность качественной очистки подаваемого воздуха, что является важным показателем для здоровья людей, особенно страдающих аллергическими и легочными заболеваниями. Чистота окружающего воздуха, как в городе, так и в сельской местности, оставляет желать лучшего. В городе - копоть, отработанные газы машин и т.п. В сельской местности - микрочастицы от цветения растений, вызывающих аллергические заболевания и т.п.

    Контроль и управление воздухообменом дает возможность обеспечить в любом помещении, в зависимости от ситуации, поступления достаточного количества воздуха, соответственно и кислорода, что качественно улучшает работу организма человека, особенно его мозга.

    Возможность рекуперации тепла от уходящего в атмосферу воздуха дает главную экономию энергопотребления. Современные установки рекуперации позволяют возвращать до 90% тепла, выбрасываемого из дома вместе с воздухом в системах традиционной естественной вентиляции. Это позволяет значительно снизить эксплуатационные затраты по теплу и дает значительную экономию бюджета.

    Для обеспечения в доме вентиляции в случае отключения электричества, предусмотрена система естественной вентиляции. Для обеспечения ее работы и возможности циркуляции воздуха предусмотрены окна с режимом микропроветривания.

    Для отвода отработанных газов от газового котла, являющегося резервным источником тепла, предусмотрен отдельный дымоход с выходом на крышу. Забор воздуха для работы котла осуществляется с улицы, а не из помещений.

    Электрика

    Согласно техническим условиям, на участок, где строится дом, выделено 10 кВт электроэнергии. Подключение дома осуществляется от распределительного электрического щита, установленного на столбе освещения.

    В доме имеется свой распределительный щит. Предусмотрен стабилизатор напряжения. Горизонтальная разводка кабельных линий осуществляется на потолке (в кабель-каналах, лотках, в трубках ПНД). Вертикальная разводка питающих этажных кабельных линий - в технологической шахте в кабель-канале, а также скрытая по стенам, в штрабе, с последующей штукатуркой и окраской. Для подключения оборудования принята отдельная питающая линия.

    Предусмотрено резервное электрообеспечение от небольшого дизельного генератора, который обеспечивает работу инженерного оборудования в случае аварийного отключения. Подключение и работа генератора происходит в автоматическом режиме и рассчитана на 8-10 часов бесперебойной работы. За это время все инженерные системы должны быть переведены в специальный режим или отключены (в зависимости от назначения того или другого оборудования).

    Заземление

    В доме предусмотрено заземление, принятое строительными нормами и правилами.

    Молниезащита

    В доме, для защиты в летнее время от молнии, предусмотрена молниезащита, которая соответствует действующим в России требованиям безопасности.

    Эксплуатационные затраты и преимущества
    энергоэффективного дома

    Учитывая непрекращающийся в России рост цен на коммунальные услуги и энергоресурсы, дома такого класса дают возможность их владельцам значительно легче пережить повышающиеся затраты на услуги ЖКХ.

    Представленный ниже рост цен на электричество и газ, не говоря о росте стоимости горячей воды, технического обслуживания и эксплуатации жилья показывает, что он в разы превышает статистический рост зарплаты среднего работающего россиянина. В случае, сохранения имеющейся динамики роста цен на услуги ЖКХ и роста средней зарплаты, в течении нескольких лет, оплата коммунальных услуг составит существенный, а может быть и основной объем расходов в бюджете рядовых российских граждан.

    Динамика фактического роста цен на газ и электричество
    с 2004 по 2014г.г. и, в случае сохранения имеющейся динамики
    роста цен, на период с 2014 по 2024г.г.

    По предварительным расчетам, дополнительные общестроительные затраты на обеспечение энергоэффективности здания и затраты на применение современного дорогостоящего инженерного оборудования, использующего альтернативные источники энергии, при действующих тарифах, оправдываются уже за 5-6 лет эксплуатации. С учетом прогнозируемого роста тарифов, в ближайшее время, срок окупаемости может сократиться до 2 лет.

    Оценка затрат на отопление обычного дома с энергопотреблением порядка 150 кВт ч/м² год и энергоэффективного дома 25-30 кВт ч/м² год позволяет сделать вывод, что затраты на различные виды энергоресурсов (газ, электричество и т.д.) при эксплуатации энергоэффективного дома снижаются в 5-6 раз, и в случае продолжения роста тарифов, о чем свидетельствуют последние 10 лет, экономия только на отоплении поможет сохранить ваш бюджет.

    Далее приведены расходы на отопление обычного дома с энергопотреблением 150 кВт ч/м² год и энергоэффективного дома с энергопотреблением 28 кВт ч/м² год с одинаковыми площадями по 300 м², и использованием различных типов энергоустановок (электрический котел, тепловой насос, газовый котел).

    Расходы при эксплуатации элэктрического котла, руб./год

    Расходы при эксплуатации газового котла, руб./год

    Год Обычный дом Энергоэффективный дом
    2024 116 545 21 755
    2019 45 556 8 504
    2014 27 303 5 097
    2009 10 062 1 878
    2004 5 966 1 114

    В заключении

    В процессе проектирования энергоэффективного дома, инженеры и архитекторы компании ООО «ИнтерСтрой», изучали опыт работы, консультировались у специалистов, как отечественных, так и зарубежных организаций, работающих в этом направлении. Многие из достижений и рекомендаций, которые достойны внимания, были реализованы при разработке индивидуального малоэтажного жилого дома серии «ИС-33э» .

    Строительство энергоэффективных домов в России находится на начальной стадии своего развития. В процессе работы над данным проектом стало очевидным, что используемые нами современные достижения, технологические и технические решения - это только малая часть того, что используется в настоящий момент в зарубежных странах.

    Нами запланировано много работы по изучению и внедрению отечественных и зарубежных разработок, которые наиболее оптимально подходят к климатическим условиям России.

    Компанией ООО «ИнтерСтрой» запланировано несколько направлений по строительству энергоэффективных домов. Ниже представлены некоторые из них:

    .

    1. Продолжение поиска наиболее оптимальных архитектурных и технических решений с применением в конструкциях здания различных типов материалов, как традиционных, так и новых, более эффективных материалов для достижения снижения энергопотребления (ниже 28 кВт ч/м² год).

    2. Вести дальнейшую работу по подбору инженерного оборудования и систем, работающих на возобновляемых источниках энергии, а также совмещать их с традиционным оборудованием, работающем на газе, электричестве, дизельном топливе, угле, дровах и т.д.

    3. Завершить в текущем году строительство опытного образца индивидуального малоэтажного энергоэффективного дома (28 кВт ч/м² год), по стоимости, не превышающей среднюю стоимость (по московскому региону) обычного дома.

    4. Произвести на данном объекте (после окончания строительства - следующие 2-3 года) комплексный мониторинг показателей работы инженерных систем и конструкций здания, что позволит:

  • повысить эффективность методик расчета энергоэффективности, применяемых к климатическим условиям России
  • проанализировать используемые строительные конструкции, строительные материалы, инженерное оборудование, технологические и технические решения для оценки возможности их дальнейшего применения
  • получить фактические расходы и эксплуатационные затраты по дому, с соответствующей расшифровкой по каждому направлению (отопление, ГВС, вентиляция, охлаждение, электроэнергия для инженерного оборудования, бытовых приборов и т.д.)
  • подготовить проектные, технические и технологические решения, для возможного снижения энергопотребления при строительстве последующих объектов, обеспечив конкурентоспособную стоимость, по сравнению со стоимостью обычного дом
  • Данные мониторинга необходимы для оптимизации и снижения стоимости строительства и последующих затрат. В свою очередь, снижение стоимости энергоэффективного дома, до стоимости, сопоставимой со стоимостью обычного дома, позволит ему занять достойное место на рынке жилья.

    Очевидно, что для любого Клиента, которому не безразлично его финансовое благополучие в будущем, выбор строительства энергоэффективного дома будет правильным решением .

    Мировой опыт решения проблемы истощения запасов топлива

    В настоящее время человечество столкнулось с необходимостью найти замену углеводородам, запасы которых невозобновляемы и неуклонно снижаются. Такая задача стоит на государственном уровне. Разные страны решают ее по-разному. Начиная с того, что созданы программы по маркировке энергоэффективных бытовых приборов и продуктов. Для этих целей в США Агентство по защите окружающей среды в 1992 году создало программу «Энерджи стар». Логотипы ENERGY STAR® и EnerGuide for Equipment используют для указания энеогозатратности инженерного оборудования (водонагревательного, отопительного, кондиционеров, вентиляции и пр.) и помогают потребителям выбирать наиболее энергоэффективные устройства, а также стимулируют компании производить энергоэффективную продукцию. Совсем недавно агентство разработало стандарт энергоэффективного здания ENERGY STAR® for New Homes «Энерджи стар». Стандарт ENERGY STAR® for New Homes популяризирует энергоэффективный способ работ в сфере домостроения. Это позволяет строить менее энергозатратные (на 30 %) новые здания.

    В конце прошлого 20 столетия в США было принято решение о том, что сбережение энергии энергетическими компаниями достигнутое у потребителей, дает энергетическим компаниям 30% средств, которые получены потребителем, вследствие экономии энергии. Причем эти средств зачисляются в счет прибыли энергетической компании. До этого было принято решение, ограничивающее прибыль энергетических компаний, получаемую от поставки энергии сверх плана. Указанные два фактора в совокупности, а также то, что инвестиции в мероприятия по экономии у потребителей для энергетической компании в 3 раза более выгодно чем строительство новых мощностей, привели к тому, что энергетические компании стали инвестировать средства в мероприятия по энергосбережению у потребителей.

    Энергокомпании стали проводить деятельность по сбережению энергии у потребителей. Одним из видов такой деятельности стало стимулирование энергосбережения ценами. Энергетические компании устанавливают скидки потребителю за уменьшение мощности оборудования.

    В 1997 г. в Канаде комиссия по зданиям (Canadian Commission on Building and Fire Codes) вместе с Национальным исследовательским советом Канады (National Research Council Canada) после консультаций с регионами (по канадским законам, градостроительство и эксплуатация зданий принадлежат к компетенции провинций и территорий) и другими заинтересованными сторонами разработали и национальные энергетические стандарты для зданий - The Model National Energy Code of Canada for Buildings 1997 (MNECB). В этом документе указаны требования к энергосбережению новых строений. Наиболее строгие требования в MNECB установлены для вводимых в эксплуатацию новых зданий на территории этой страны. По мнению канадских властей это позволит к 2011 г. повысить на 25% энергоэффективность новых зданий по сравнению со старыми зданиями.

    В Японии после нефтяного кризиса 1973 г. были разработаны и приняты меры по энергосбережению. Это привело к к снижению на 35% энергоемкости ВВП. Однако, вдальнейшем энергопотребление начало увеличиваться в среднем на 3,1% в год. Японское правительство было вынуждено в 1993 г. пересмотреть «Закон об энергосбережении». В настоящее время в Японии министерство международной торговли и промышленности обязано устанавливать, опубликовывать и реализовывать основные политику, направленную на разностороннее стимулирование национального энергоиспользования, а основные энергопользователи обязаны выполнять мероприятия по рационализации энергопользования в соответствии с политикой японского правительства.

    В Европе едва ли не первым международным документом, в котором указано о необходимости введения энергоаудита, стала Директива Евросоюза 93/76/ЕС «о ограничении выделений двуокиси углерода путём улучшения энергоэффективности». Одно из нововведений Директивы предусматривало обязательность определения расходов на отопление, кондиционирование, горячее и холодное водоснабжение зданий. Указанная директива стала основой для создания новых норм и правил в области энергоэффективности в странах ЕС. Директива Евросоюза 93/76/ЕС указала правовые основы энергоаудита в Европе.

    Сегодня в большинстве стран Европы энергоаудит является обязательным для оформления энергетического паспорта строения. Энергетический паспорт здания это документ, который содержит данные по теплоэффективности здания, данные о фактическом энергопотреблении здания и является подтверждением соответствия здания действующим энергоэффективным нормам.

    Несмотря на то, что действует Директива Евросоюза 93/76/ЕС, в настоящее время в странах Европы отсутствует единый подход к сертификации. Национальные правительства разрабатывают национальные требования к сертификации зданий. Однако, уже сейчас сертификация зданий, которые расположены на территории Европейского союза, производится по рейтингу энергетической эффективности зданий. Рейтинг присваивается зданию в зависимости от потребления энергии, вычесленной в кВт.ч/м2.год. В соответствии с этим рейтингом зданию или сооружению выдается сертификат, который свидетельствует о соответствии классу энергоэффективности от A, при потреблении равном или меньше 25 кВт.ч/м2.год, до G, при потреблении, свыше 450 кВт.ч/м2.год.

    В соответствии с документом, который получил название «Цели 2020» (2007 г.), энергоэффективность к 2020 г. должна повыситься на 20%, доля возобновляемых источников энергии в ее производстве должна вырасти до 20%, на 30% должен быть уменьшен выброс углекислого газа CO2. Эти цели будут достигаться в том числе за счет появления продукции спецмаркировки, которая указывает на энергетический класс, уровень шума и другие существенные характеристики.

    Лидером по разработке и постройке энергоэффективных зданий является Дания. В этой стране экономический рост не сопровождается ростом энергопотребления. В настоящее время дом в Дании не будет принят в эксплуатацию, если на его отопление затрачивается более 70 кВтчас на 1 метр квадратный.

    Новые градостроительные нормы в Дании были введены в 2006 г. Согласно новых норм на 25-30% по сравнению с предыдущими нормами возросли требования к энергоэффективности зданий. Нормы, которые будут приняты в 2015 г., будут еще строже. Важной мерой в обеспечении энергосбережения при отоплении является энергетическая маркировка строений и зданий. Энергетическая маркировка применяется и для вновь возводимых, и для существующих зданий. В этой стране принято разделять здания в зависимости от площади на здания общей площадью менее 1500 м2 и более1500 м2. В разных случаях по-разному маркируют здания и применяют разные способы энергосбережения. Как показала датская практика, такая маркировка строений и зданий является действенной мерой, позволяющей ограничивать расход энергии в зданиях.

    Положение дел по рассматриваемому вопросу в России

    В России в настоящее время, по оценкам экспертов, тратится на отопление 350 кВтчас на 1 метр квадратный. Это в пять раз больше чем в Европе. В том числе поэтому энергоэффективность стала одним из основных направлений исследований, проводимых в «Сколково». Так, специально для того, чтобы осуществлять разработку новых технологий в области энергоэффективности запланировано строительство исследовательского центра датского концерна Danfoss. Danfoss является ведущим мировым производителем оборудования для энергоэффективных зданий. Кроме того, «Сколково» впоследствии станет испытательным полигоном для инновационных технологий, которые здесь разрабатываются. Пример воплощения новых технологий это строительство здания, названного «Гиперкуб».

    Немного теории

    Энергоэфективность это рациональное расходование энергии.

    В домостроении можно выделить следующие первичные факторы растраты энергии:

    • архитектурные решения, вызывающие повышенный расход энергии;
    • отсутствие практики применения альтернативных видов энергии;
    • отсутствие приборов контроля и учета энергии;
    • плохое качество и неграмотный монтаж оконных рам;
    • плохое качество теплоизоляционное стен;
    • морально устаревшие системы вентиляции;
    • значительная протяженность теплотрасс.

    Практическим решением, которое позволяет исключить приведенные выше факторы нерационального расхода является энергоэффективный дом. Под энергоэффективным домом принято понимать здание, для которого характерно малое энергопотребление идеальным вариантом является энергонезависимость.

    Концепции энергоэффективного дома

    В настоящее время разработано несколько концепций энергоэффективного дома.

    Концепция «Пассивный дом». Концепция «Пассивный дом» это наиболее ранняя и очень известная концепция энергоэффективного дома. Эта концепция впервые была применена в Германии в конце 20-го века. Сейчас принято относить здание к «пассивным», если оно соответствует стандартам, немецкого института пассивных зданий. «Пассивный» дом – это, в первую очередь, хорошая теплоизоляция. В пассивном доме поддерживается комфортный микроклимат главным образом за счет тепла человеческого тела, энергии солнца, энергии бытовых электроприборов и т.д.

    Пассивный дом практически не имет тепловых потерь. Технологии «пассивного дома» проверены в условиях сурового климата скандинавских стран и доказали свою эффективность. Впервые пассивный дом был возведен по экспериментальному проекту в 1991 году в Германии, руководил проектом Вольфранг Файст. В здании проживают четыре семьи, на отопление расходы не превышают 1 л жидкого топлива в год на 1 м2 площади, подлежащей отоплению. В конце первого десятилетия 21 века было введено в эксплуатацию более 7000 пассивных домов. В пассивном доме экономия энергии составляет 90%. Это достигается в первую очередь за счет грамотной теплоизоляции ограждающих стен, увеличения площади остекления южного фасада, а также за счет автоматизированных систем отопления и вентиляции. Также используется солнечная энергия.

    Концепция дома с нулевым энергопотреблением. В концепции «Дома с нулевым энергопотреблением» основное внимание уделяется использованию альтернативных видов энергии.

    Первый дом с нулевым энергопотреблением был построен в США талантливым инженером Майком Стризки. В доме Майка Стризки летом солнечные батареи вырабатывают на 60% больше энергии, чем это требуется о для нормального проживания. Избыток расходуется на получение водорода из воды. Водород используется для отопления зимой, когда солнечного тепла недостаточно. Майк Стризки не платит денег ни за электричество, ни за газ. Отрицательной стороной концепции дома с нулевым энергопотреблением является высокая стоимость инженерных решений. Поэтому практически, при реализации этой концепции, специалисты сокращают утечки нагретого воздуха, утепляют ограждающие стны, ориентируют окна на юг, разрабатывают энергоэффективные архитектурные решения. Указанные меры в обеспечивают экономить до 60-70% энергии на отопление.

    Дом генерирующий энергию. Концепция дома генерирующего энергию являет собой дом, который сам производит электроэнергию для своих нужд. При этом излишки электроэнергии летом продаются энергетической компании, а зимой покупаются обратно. Эффективная теплоизоляция, грамотные архитектурные решения, технологии, позволяющие преобразовывать энергию альтернативных источников в электроэнергию делают такие дома технически реализуемыми.

    Энергоэффективный дом Active House в России

    Европейская концепция Active House пришла в Россию.

    Построенный в России по концепции Active House дом являет собой комплекс инженерных решений, направленных на бережное природопользование и рациональное расходование энергии. Архитектор Ральф Ноулз пришел к выводу, что энергоэффективность здания зависит от отношения площади ограждающих конструкций к объему здания. Чем меньше это отношение, тем в меньшей мере здание подвергается влиянию окружающей среды. Построенный в России Active House полностью соответствует этой закономерности. Главным компонентом Active House – является строительная часть здания. Грамотно рассчитанная и качественно смонтированная теплоизоляция, специальный каркас здания, который устраняет «мостики холода», специальная разработка узлов примыкания, повышенная герметичность здания позволили инженерам сократить теплопотери.

    Применение теплового насоса позволило на 72%, в сравнении с электрокотлом, снизить расход электроэнергии. По итогам наблюдения средний сезонный коэффициент преобразования для теплового насоса составляет 3,6 единиц. Эта величина учитывает работу всего встроенного электрического оборудования, в т.ч. трубчатых электронагревателей. Таким образом на 1 кВт*ч электрической энергии, потраченной на работу теплового насоса, вырабатывается 3,6 кВт*ч тепла. Другими словами, для теплового насоса мощностью 9,4 кВт*ч, примерно 6,78 кВт*ч – получено от тепла земли. Другим инновационным решением стало применение солнечных коллекторов. Это решение полностью оправдало себя. Нагрев воды на 70% производится за счет энергии солнца, это позволяет сберегать порядка 30 тыс. рублей в год. Однако из-за особенностей климата в России, эффективность работы таких устройств, как солнечные коллектора зависит от времени года. Зимой значительный снежный покров не позволяет солнечным коллекторам работать на полную мощность, весной система становится эффективной. Так, например, в марте солнечная энергия покрывает 344 кВт из 433 затраченных на нагрев воды, в апреле солнечные коллектора вырабатывают 527 кВт.

    Микроклимат, создается в доме при помощи интеллектуальных систем вентиляции, фильтрации воздуха и обогрева. В Active House поддерживается наилучший уровень кислорода и оптимальная влажность. Это стало возможным благодаря применению экологических строительных материалов, а также за счет применения специальных датчиков, реагирующих на рост содержания СО2 в воздухе.

    Значительная площадь остекления, достигнута благодаря применению мансардных и фасадных окон. Естественная освещенность в «Active House» в 10 раз превышает уровень требований СНиП. Такое обилие света используется для отопления и комфортно. Многочисленными опытами доказано, что освещение солнечным светом как нельзя лучше влияет на организм человека. Кроме того, освещение солнечным светом экономит электроэнергию. Так как большая часть окон находится на южном фасаде, солнечное тепло не теряется, а используется для обогрева. Дополнительные теплопоступления за счет расположения окон на южной стороне составляют порядка 7000 кВт*ч.

    По результатам опытной эксплуатации Active House специалисты сделали вывод о том, что затраты на энергию в Active House в 11 раз ниже, чем в неэнергоэффективном доме. Цифры говорят сами за себя. Фактические расходы в «Active House» составляют около 20 тыс. рублей в год, а расходы в неэнергоэффективном доме составляют – 217 тыс. рублей в год.

    Суровые будни российской действительности

    Как было сказано, в России энергопотребление здания составляет примерно 350 кВт/(м2*год). Такие цифры для новых зданий, установлены нормами СНиП 23-02-2003 «Тепловая защита зданий». По сравнению с европейским положение дел такое энергопотребление крайне расточительно. Энергоэффективные дома строятся очень редко, в основном для исследований на средства бюджета. Частные застройщики энергоэффективные здания не возводят. Основным фактором, препятствующим внедрению энергоэффективных технологий в строительстве, является повышенная стоимость энергоэффективного дома.

    По мнению председателя Комитета по системам инженерно-технического обеспечения зданий и сооружений НОСТРОЙ Ивана Дьякова в настоящее время, в России ни один жилой дом не отвечает требованиям, которые предъявляются энергоэффективным зданиям. Такое важное заявление сделал Иван Дьяков на III Всероссийском конгрессе.

    Руководитель аппарата Национального объединения проектировщиков Антон Мороз также считает, что инновации по энергоэффективности и энергосбережению станут внедряться, только после законодательного закрепления обязанности заказчиков применять энергоэффективные технологии в строительстве. Те энергоэффективные решения, которые заложены в проект при проектировании, в процессе возведения здания, чаще всего, не реализуются. Это происходит из-за того, что Заказчик не имеет стимула вкладывать средства в энергоэффективные технологии.

    Таким образом, можно сделать вывод о том, что для широкого внедрения энергоэффективных технологий нужна законодательная база и реальные государственные программы, которые бы стимулировали энергоэффективное строительство в нашей стране. Для решения этого вопроса начаты исследования в Сколково, ведется сотрудничество с датской компанией- производителем тепловых насосов «Данфос», бюджетные учреждения обязаны составлять энергетические паспорта зданий. Однако этих мер явно не достаточно. Отставание от Европы составляет годы. Для того чтобы ликвидировать наметившееся основание, необходимо строительство энергоэффективных домов проводить в рамках федеральной программы, с частичным финансированием инновационных технологий государством.