Тороидальный трансформатор – электротехнический преобразователь напряжения или тока, сердечник которого изогнут кольцом и замкнут. Профиль сечения отличается от круглого, название все равно применяют за неимением лучшего.

Отличия тороидальных трансформаторов

Автором тороидальных трансформаторов признан Майкл Фарадей. Возможно встретить в отечественной литературе (особенно, коммунистических времен) утопичную идею: первым собрал подобное Яблочков, сравнив указываемую дату – обычно, 1876 год – с ранними опытами по электромагнитной индукции (1830). Просится вывод: Англия опередила Россию на полвека. Интересующихся подробностями отошлем к обзору . Приводятся детальные сведения о конструкции первого в мире тороидального трансформатора. Изделие отличает форма сердечника. Помимо тороидальных принято по форме различать:

  1. Броневые. Отличаются избыточностью ферромагнитного сплава. Для замыкания линий поля (чтобы проходили внутри материала) ярма охватывают обмотки с внешней стороны. В результате входная и выходная наматываются вокруг общей оси. Одна поверх другой или рядом.
  2. Стержневые. Сердечник трансформатора проходит внутри витков обмотки. Пространственно входная и выходная разнесены. Ярма вбирают малую часть линий напряженности магнитного поля, проходящих за пределами витков. Фактически нужны, чтобы соединить стержни.

Тороидальный трансформатор

Новичку приходится туго, нелишне пояснить подробнее. Стержнем называется часть сердечника, проходящая внутри витков. На остов наматывается проволока. Ярмом называется часть сердечника, соединяющая стержни. Нужны передавать линии магнитного поля. Ярма замыкают сердечник, формируя цельную конструкцию. Замкнутость требуется для свободного распространения внутри материала магнитного поля.

Тема Магнитная индукция показывает – внутри ферромагнетика поле значительно усиливается. Эффект образует базис функционирования трансформаторов.

В состав стержневого сердечника ярмо входит минимальным составом. В броневом охватывает дополнительно обмотки снаружи вдоль длины, как бы защищая. От аналогии произошло название. Майкла Фарадея выбрал тор скорее интуитивно. Формально можно назвать стержневым сердечником, хотя направляющая оси симметрии обмоток идет дугой.

Опорой первому магниту (1824 год) стала лошадиная подкова. Возможно, факт придал направлению полета творческой мысли ученого верный азимут. Используй Фарадей иной материал, опыт окончится неудачей.

Тор навивают единой лентой. Подобные сердечники называют спиральными в отличие от броневых и стержневых, которые фигурируют в литературе за термином пластинчатые. Это введет в заблуждение. Лишний раз следует сказать: тороидальный сердечник, будучи намотанным отдельными пластинами, называется спиральным. Разбивать частями приходится, когда отсутствует лента. Это вызвано чисто экономическими причинами.

Подытожим: в исходном виде тороидальный трансформатор Фарадея имел сердечник круглого сечения. Сегодня форма невыгодна, невозможно обеспечить массовое производство соответствующей технологией. Хотя деформация проволоки по углам сгиба приводит однозначно к ухудшению характеристик изделия. Механические напряжения повышают омическое сопротивление обмотки.

Сердечники тороидальных трансформаторов

Тороидальный трансформатор назван за форму сердечника. Майкл Фарадей изготовил бублик, использовав цельный кусок мягкой стали круглого сечения. Конструкция нецелесообразна на современном этапе по нескольким причинам. Главное внимание уделяется минимизации потерь. Сплошной сердечник невыгоден, наводятся вихревые токи, сильно разогревающие материал. Получается плавильная индукционная печь, легко превращающая в жидкость сталь.

Чтобы избежать ненужных трат энергии и нагревания трансформатора, сердечник нарезают полосами. Каждая изолируется от соседней, например, лаком. В случае тороидальных сердечников наматывают единой спиралью, либо полосами. Сталь обычно на одной стороне имеет изолирующее покрытие толщиной единицы микрометра.

Упомянутые стали используются для конструирования , довольно часто по исполнению являющихся тороидальными. Интересующимся можно ознакомиться с ГОСТ 21427.2 и 21427.1. Для сердечников (как следует из названия документов) сегодня чаще используется анизотропная холоднокатаная листовая сталь. В название заложено: магнитные свойства материала неодинаковы по разным осям координат. Вектор потока поля должен совпадать с направлением проката (в нашем случае движется по кругу). Ранее применялся другой металл. Сердечники высокочастотных трансформаторов могут изготавливаться из стали 1521. В рамках сайта особенности применяемых материалов обсуждались (см. ). Сталь маркируется по-разному, в состав обозначения включаются сведения:

  • Первое место отводится цифре, характеризующей структуру. Для анизотропных сталей применяется 3.
  • Вторая цифра указывает процентное содержание кремния:
  1. менее 0,8%.
  2. 0,8 – 1,8%.
  3. 1,8 – 2,8%.
  4. 2,8 – 3,8%.
  5. 3,8 – 4,8%.
  • Третья цифра указывает основную характеристику. Могут быть удельные потери, величина при фиксированной напряженности поля.
  • Тип стали. С ростом числа удельные потери ниже. Зависит от технологии производства металла.

Теряет значение взаимное расположение конца и начала ленты. Чтобы спираль не размоталась, последний виток приваривают к предыдущему точечной сваркой. Намотка ведется с натяжением, собранные из нескольких полос ленты обычно не удаётся подогнать плотно, сварной шов выполняется внахлест. Иногда тор режется на две части (разрезной сердечник), на практике требуется сравнительно редко. Половинки при сборке стягиваются бандажом. В процессе изготовления готовый тороидальный сердечник режется инструментом, торцы шлифуются. Витки спирали скрепляются связующим веществом, чтобы не размоталась.

Намотка тороидальных трансформаторов

Стандартно производится дополнительная изоляция тороидального сердечника от обмоток, даже если используется лакированная проволока. Широко применяется электротехнический картон (ГОСТ 2824) толщиной до 0,8 мм (возможным другие варианты). Распространенные случаи:

  1. Картон наматывается с захватом предыдущего витка на тороидальный сердечник. Способ характеризуется, как вполнахлеста (половина ширины). Конец приклеивается или закрепляется киперной лентой.
  2. По торцам сердечник защищают картонные шайбы с надрезами глубиной 10 – 20 мм, шагом 20-35 мм, перекрывающие толщину тора. Наружная, внутренняя грань закрываются полосами. Технологически шайбы идут в сбор последними, прорезанные зубцы загибаются. Поверх спирально наматывается киперная лента.
  3. Надрезы могут производиться на полосах, тогда берутся с запасом, чтобы больше высоты тора, кольца – строго по ширине, накладываются поверх загибов.
  4. Тонкие полосы, кольца текстолита закрепляются на тороидальном сердечнике лентами стеклоткани вполнахлеста.
  5. Иногда кольца выполняются из электротехнической фанеры, гетинакса, толстого (до 8 мм) текстолита с запасом наружного диаметра 1-2 мм. Внешнюю и внутреннюю грань защищают картонными полосами с загибом по краям. Меж первыми витками обмотки, сердечником остается воздушный зазор. Промежуток под картоном нужен на случай, если края под проволокой протрутся. Тогда токонесущая часть никогда не коснется тороидального сердечника. Поверх наматывается киперная лента. Иногда внешнее ребро колец сглаживается, чтобы намотка углами шла плавно.
  6. Имеется разновидность изоляции, сходная с предыдущей, с внутренней стороны по кольцам на внешних ребрах имеются проточки до сердечника, куда ложатся полосы. Элементы выполняются из текстолита. Поверх наматывается киперная лента.

Обмотки обычно выполняются концентрическими (одна над другой), либо чередующимися (как в первом опыте Майкла Фарадея 1831 года), называют иногда дисковыми. В последнем случае через одну может наматываться достаточно большое их число, попеременно: то высокое напряжение, то низкое. Применяется чистая электротехническая медь (99,95%) удельным сопротивлением 17,24 – 17,54 нОм м. Ввиду дороговизны металла для изготовления тороидальных трансформаторов малой и средней мощности берется рафинированный алюминий. Для прочих случаев сказываются ограничения по проводимости и пластичности.

В мощных трансформаторах медный провод бывает прямоугольного сечения. Делается для экономии места. Жила должна быть толстой, пропуская значительный ток, дабы не расплавиться, круглое сечение приведет к излишнему росту габаритов. Выигрыш равномерности распределения поля по материалу свелся бы к нулю. Толстый прямоугольный провод достаточно удобно укладывать, чего нельзя сказать касательно тонкого. В остальном (по конструктивным признакам) намотка производится в точности теми же путями, как в случае обычного трансформатора. Катушки делаются цилиндрическими, винтовыми, однослойными, многослойными.

Определение конструкции тороидального трансформатора

Интересующимся вопросом рекомендуем изучить книгу С. В. Котенева, А. Н. Евсеева по расчету оптимизации тороидальных трансформаторов (издание Горячая линия – Телеком, 2011 год). Напоминаем: издание защищено законом об авторских правах. Профессионалы найдут силы (средства) приобрести при необходимости книгу. Согласно главам, расчет начинается определением параметров режима холостого хода. Подробно описывается, как найти активный и реактивный токи, высчитать ключевые параметры.

Печатное издание, несмотря на некоторую спорность изложения, попутно дает понять, почему включенный в цепь трансформатор, лишенный нагрузки, не сгорает (энергия тока расходуется намагничиванием). Хотя, казалось бы, предсказан очевидный исход мероприятия.

Число витков первичной обмотки выбирается из условия не превышения магнитной индукцией максимального значения (до входа в режим насыщения, где значение не меняется ростом напряженности поля). Если конструирование ведется для бытовой сети 230 вольт, берется допуск согласно ГОСТ 13109. В нашем случае, имеется в виду отклонение амплитуды в пределах 10%. Помним: вся промышленность перешла в XXI веке на 230 вольт (220 не используется, приводится в литературе, «наследием тяжелого прошлого»).

По форме магнитопровода трансформаторы подразделяются на стержневые, броневые и тороидальные. Казалось бы, разницы нет, ведь главное - мощность, которую способен преобразовать трансформатор. Но если взять три трансформатора с магнитопроводами разной формы на одну и ту же габаритную мощность, то выяснится, что тороидальный трансформатор покажет лучшие рабочие характеристики из всех. Именно по этой причине чаще всего для питания различных устройств во многих промышленных сферах выбор останавливают, конечно, на тороидальных трансформаторах в силу их высокой эффективности.

Сегодня тороидальные трансформаторы применяют в различных сферах промышленности, и наиболее часто тороидальные трансформаторы устанавливают в источники бесперебойного питания, в стабилизаторы напряжения, применяют для питания осветительной техники и радиотехники, часто тороидальные трансформаторы можно увидеть в медицинском и диагностическом оборудовании, в сварочном оборудовании и т.д.


Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и : он понижает или повышает напряжение, повышает или понижает ток - преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора - небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов. вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности. Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.


Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам: во-первых, экономия материалов на производстве, во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест, в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток - еще один важный фактор. Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.


Экономия электроэнергии - еще один плюс в пользу тороидального трансформатора. Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.


При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, - и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Многие сварщики-любители мечтают о тороидальном трансформаторе. Ведь давно известно, что массогабаритные характеристики у тороидов намного лучше чем у "Ш" и "П"-образных трансформаторов. Так, при тех же характеристиках, тороид в 1,3-1,5 раза меньше. Причина по которой многие не берутся за изготовление такого трансформатора, - это отсутствие железа. Данная статья поможет найти выход из такой ситуации.

Конструкция предполагает изготовление тороидального трансформатора из отслужившего свое промышленного сварочного трансформатора. Для этого он разбирается, и из пластин размером 90X450 мм собирается бублик. Нужная площадь сечения сердечника зависит от количества пластин.

В принципе, пластины можно использовать и от силовых трансформаторов старых ламповых цветных телевизоров. Трансформатор ТС270, ТСА310 раэбирают. П-обраэные сердечники ударом молотка разбивают на пластины, которые на наковальне выправляют.
Для изготовления бублика, необходимо для начала склепать обруч из пластин, внешним диаметром 260 мм. Затем внутрь обруча вставляют первую пластину, придерживая её рукой, чтобы она не раскрутилась, встык к ней вставляют вторую, и так далее, до получения внутреннего диаметра бублика 120 мм. Если бублик делается из трансформаторов ТС270, то диаметр нужно пересчитать для достижения необходимой площади сечения. Можно сделать два бублика и сложить их вместе. В этом случае, внешние и внутренние диаметры бублика можно оставить без изменения.

Края тороида обрабатываются напильником. Из электрокартона изготавливаем два кольца внешним диаметром 270 мм, внутренним 110 мм, и полоску шириной 90 мм. Прикладываем заготовки из электрокартона к бублику и обматываем изолентой на тканной основе, можно обмотать тесьмой от петлей размагничивания кинескопов. Первичная обмотка мотается проводом ПЭВ-2 диаметром 2,0 мм, количество витков для 220 В примерно 170. Это во многом зависит от плотности сборки пластин. Точное количество витком можно проверить экспериментально. Если ток холостого хода будет больше 1-2 А, то необходимо домотать витки, если меньше - отмотать. Вторичная обмотка мотается проводом ПВ3 сечением 15-20 мм, 30 витков. Третья обмотка содержит так же 30 витков, но намотанных проводом МГТФ 0,35. Между обмотками прокладывается изоляция из тесьмы.

После испытания трансформатора можно можно приступить к изготовлению схемы управления. Она представляет собой фазовый регулятор тока. Переменное напряжение, снятое с третьей обмотки трансформатора выпрямляется мостом на диодах VD5-VD8 Положительной полуволной через резисторы R1 и R2 заряжается конденсатор С1. Когда напряжение на нём достигнет примерно шести вольт происходит пробой аналога низковольтного динистора, собранного на стабилитроне VD6 и тиристоре VS3, и через диод VD3 происходит открывание тиристора VS1. Ёмкость С1 при этом разряжается. То же самое происходит при отрицательной полуволне, только открывается диод VD4 и тиристор VS2. Резистор R3 служит для ограничения тока через аналог динистора.
Налаживание заключается в подстройке резистором R1 необходимой зоны регулирования сварочного тока.

В качестве SA1 можно использовать любой автомат на 25 А КД209А можно заменил» на КД202В-КД202М или любые другие на ток более 0,7 А и напряжение более 70 В. Тиристор КУКЛА можно заменить на КУ201-КУ202. Резисторы R1 и R2 - на мощность не менее 10 Вт. С1 - К50-6. VD1, VD2, VS1, VS2 на ток 160-250 А с любой группой по напряжению. Их необходимо установить на радиаторы с площадью охлаждения не менее 100 см2.

Обмотка 3 трансформатора рассчитана на напряжение 40 В, а вторичную, при необходимости, можно увеличить.

!
В этой статье речь пойдет о том, как правильно мотать импульсный трансформатор.

Автор YouTube канала «Open Frime TV» Роман, не так давно собирал импульсный блок питания на микросхеме IR2153, а сейчас он расскажет, как самостоятельно намотать импульсный трансформатор для самодельного блока питания.

Так уж сложилось, что первый намотанный автором трансформатор был на ферритовом кольце, и после этого он уже не мог мотать на ш-образных, и на то есть несколько причин. Первое - это относительно небольшое место намотки ш-образных сердечников, а у тороидальных же можно растянуть по всему кольцу. И отсюда появляется вторая проблема, если намотали много витков, то потом закрыть половинки сердечника сложно.






Да, вы можете сказать, что обратной стороной медали будет распространенность таких сердечников в блоках питания компьютера, но вы попробуйте сначала разберите нормально сердечник, не сломав его. Хотя уже было экспериментально доказано, что поломанный сердечник после склейки работает так же, как и новый, но душе спокойнее, когда используется цельный феррит.


Еще одно, при одинаковых размерах ферритовое кольцо имеет большую мощность, чем ш-образный сердечник. Вот к примеру, несколько сердечников. Ш-образный может выдать мощность 150-180Вт, а примерно такой же по размеру тороид может выдать 250Вт.


Для сравнения, вот еще один тороид, который всего на 1 см больше предыдущего, а этот уже может выдать 600Вт мощности.


Автор надеется, что приведенные им доводы были весьма вескими, и советует переходить на намотку трансформаторов на тороидальные сердечники. Ну а теперь собственно переходим к намотке. Для этого нам понадобится сердечник. Они бывают разных типов. Вот такие, еще производства СССР и вот такие сделанные в Китае:




Можно использовать как те, так и другие. У сердечников, изготовленных в Советском Союзе должна быть маркировка 2000НМ, а при выборе китайских необходимо следить за проницаемостью, она должна быть в районе 2000-2200.




С этим разобрались, идем дальше. Как видим, китайские сердечники уже покрыты краской и по сути можно мотать прямо на сердечник без изоляции.


Но тогда провод будет скользить по поверхности. Если вас, как и автора такое не устраивает, то для изоляции можно использовать вот такую желтую высоковольтную майларовую ленту:


Или же можно использовать вот такой термоскотч:


Применять в данном случае классическую синюю изоленту крайне нежелательно, так как при нагреве она сильно задерживает тепло. Перед изготовлением трансформатора вы уже знаете какое напряжение и мощность он должен выдать. Вот и автор придумал себе следующее техническое задание: необходимо намотать трансформатор на 24В, мощностью 80Вт для будущего проекта паяльной станции.


С расчетами нам поможет следующая программа:


Ссылку на нее автор оставил в описании под видеороликом (ссылка ИСТОЧНИК в конце статьи). В программе водим необходимое значение. Если делаете импульсный блок питания по схеме автора, то просто повторяете действия как на экране (более подробно это показано в видеоролике автора внизу страницы).

Отличия будут в нескольких параметрах. Первое - это частота.


Она зависит от номинала вот этого резистора:


Посчитать ее можно в онлайн калькуляторе. Сюда достаточно забить номинал конденсатора и резистора. На выходе получим частоту.


Также у вас будут свои выходные напряжения и диаметры проводов.


Когда разобрались с данными приступаем к выбору сердечника. Если у вас есть в наличие сердечники, то замеряем их размер с помощью линейки или штангенциркуля, а потом ищем в программе такой же типоразмер. Когда указали свой сердечник, программа покажет габаритную мощность, и вы уже понимаете подходит он или нужно искать новый.




Если в наличии нет сердечников, то просто начните перебирать разные размеры. Таким образом находим нужный сердечник, а потом остается только купить его в магазине. Надеюсь, вам стал понятен принцип выбора сердечников. У автора в наличии были сердечники с минимальной мощностью 250Вт, их можно спокойно использовать. Да, будет небольшой перерасход материала, но это не страшно, лучше большая мощность, чем меньшая.

Автор решил использовать сердечник с заведомо большей мощности, потому что на нем будет нагляднее видно процесс намотки. Когда ввели все данные в программу, нажимаем кнопку «рассчитать», и получаем необходимые параметры для намотки.


Как вы помните, нам нужно получить напряжение 24В на выходе, но по расчетам получается 26В. В таком случае можно изменять частоту и искать такое значение, при котором на выходе будет нужное напряжение. Вместе с изменением частоты изменяются и параметры обмотки. Вот к примеру, мы нашли частоту 38кГц, при которой на выходе получаем напряжение ровно 24В. Переходим в онлайн калькулятор, и изменяя номинал резистора, находим значение, при котором будет нужная частота в 38кГц, а потом уже непосредственно при запайке резистора на плату, на нем выставляем нужный номинал.




Можно переходить к намотке. Изолируем сердечник.


Теперь можно мотать первичную обмотку, но на глаз равномерно распределить будет сложно, поэтому сделаем разметку. Нам понадобится листик и транспортир. Делаем 2 диаметра: внутренний и наружный. Ставим точку отсчета и с помощью транспортира делим нашу разметку на то количество, сколько нужно витков. Потом вырезаем ее, и с помощью скотча приклеиваем на сердечник.






Далее нужно отмотать необходимую длину провода для намотки. Сделать это можно зная длину одного витка, а также количество витков. Замеряем один виток и умножаем на количество, а также добавляем 5% из-за того, что провод ложится не виток к витку, а немного растянуто, а еще и выводы необходимо сделать.

Когда узнали длину провода, отматываем его, отрезаем и можно мотать. Для этого автор пользуется вот таким приспособлением:




На него наматывается провод и потом спокойно продевая его в сердечник производится намотка строго по разметке. Для крепления витков можно использовать суперклей.




Теперь осталось подпаять многожильный провод к первички и заизолировать тем же термоскотчем.


Вот и все - первичка готова, приступаем к изготовлению вторички. Направление намотки первички и вторички может не совпадать - это неважно. Процедура намотки вторички практически не отличается от намотки первичной обмотки, такая же разметка, витков правда меньше, но процесс идентичен.




А теперь самое важное. Вот здесь путается большинство людей, это то, как сделать среднюю точку. Итак, сейчас автор продемонстрирует это максимально наглядно. Вот мы намотали одну половину вторички - это будет средней точкой.

Большинство электронных устройств для своей работы нуждаются в определённом типе питания, отличающегося от поступающего из промышленной сети. Одним из видов таких устройств является тороидальный трансформатор. Прибор нашёл широкое применение в различных областях энергетики, электроники и радиотехники. Наиболее часто трансформаторы используются в электрических сетях и в блоках питания всевозможной электронной техники.

Конструкция и принцип работы

Трансформатор - название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор - это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.

Трансформатор - это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.

Любой трансформатор в своей конструкции содержит следующие компоненты:

  • магнитопровод (сердечник);
  • обмотки;
  • каркас для расположения обмоток;
  • изолятор;
  • различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п.).

Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.

Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.

По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением - жидкостно-воздушным. К главным техническим параметрам устройства относятся:

  1. Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
  2. Величина выходного напряжения. Определяется коэффициентом трансформации.
  3. Тип трансформации. Существует с повышением или понижением уровня сигнала.
  4. Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
  5. Число обмоток. Существуют двухобмоточные или многообмоточные устройства.

К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.

В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение - изменять значение тока относительно своего входа. Другое название такого вида устройства - токовый.

Токовый трансформатор - измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия - в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Расчёт параметров изделия

Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.

Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.

Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:

  • S- площадь сечения;
  • h- высота конструкции;
  • D- наружный диаметр;
  • d - внутренний диаметр.

Для вычисления площади окна используется формула: Sок=3,14*d2/4.

Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.

Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.

Сварочное устройство

Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:

1. Рассчитывается мощность трансформатора: Р = 200 А * 50 В = 1000 Вт.

2. Вычисляется сечение окна: Sок = π * d2/ 4 = 3,14 * 144 / 4 (см2) ≈ 113 см².

3. Площадь поперечного сечения: Sс=h * Н = 2 см * 30 см = 60 см².

4. Мощность сердечника: Рс = 2,76 * 113 * 60 (Вт) ≈ 18712,8 Вт.

5. Количество витков первичной обмотки: W1 = 40 * 220 / 60 = 147 витков.

6. Количество витков для вторичной обмотки: W2 = 42 * 60 / 60 = 42 витка.

7. Площадь провода вторички находится исходя из наибольшего рабочего тока: Sпр = 200 А /(8 А/мм2) ≈ 25 мм².

8. Вычисляется площадь провода первички: S1 = 43 А /(8 А/мм2) ≈ 5,4 мм².

Такой вариант расчёта применим не только для сварочников, но и с успехом может быть использован для других типов. Как видно, никаких трудностей при расчёте возникнуть не должно.

Токовый трансформаторный прибор

Трансформатор тока своими руками сделать несложно, но перед его изготовлением понадобится выполнить расчёт. Такой расчёт отличаетчя от общепринятого в связи с конструктивными особенностями изделия. Начинается он с необходимой величины тока вторички (единица измерения ампер): Iам = Iпер / Iвт, где:

Iпер - величина тока первичной обмотки, умноженная на число витков в ней;

Iвт - количество витков во вторичной обмотке.

Для того чтобы разобраться, как правильно выполнить расчёт, проще рассмотреть практический пример самодельного токового устройства. Пусть на выходе токового устройства необходимо получить 4 вольта, а ток ограничить уровнем 5 ампер.

Поэтапно методика вычисления выглядит так:

  1. Берётся ферритовое кольцо, для примера 20×12х6 из 2000hМ.
  2. Мотается 100 витков провода. Эти витки составляют вторичную обмотку, так как первичная - это просто один виток проволоки, пропущенный через феррит.
  3. Значение тока во вторичке будет равно: I/Kтр = 5 / 100 = 0,05 A. где Ктр - коэффициент трансформации трансформатора (отношение количества первичной обмотки к вторичной).
  4. Величина нагрузочного шунта рассчитывается согласно закону Ома: R = U/I. Получается R= 4/0,05 = 80 Ом.

Таким образом можно выполнить расчёт для любых требуемых параметров. Независимо от формы тока на входе, на выходе токового устройства напряжение всегда двухполярное. В качестве шунта вторичной обмотки используется именно сопротивление, а не диод. Если есть необходимость в диоде, то вначале подключается резистор, а затем диод или диодный мост. Во втором случае сопротивление включается в диагональ моста.

Самостоятельное изготовление

Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.

Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.

Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:

Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.

Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.

Намоточный станок своими руками

Один из возможных вариантов - сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.

Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.

Создание более совершенного устройства потребует применение шаговых двигателей с позиционированием их положения. Для этого используются микроконтроллеры и электронный счётчик. Такое конструирование требует определённых навыков в радиоэлектронике.