ให้เส้นตรงถูกกำหนดไว้ในอวกาศ และ - เราวาดเส้นตรงผ่านจุด A ของช่องว่าง 1 - ลและ 1 - ม(รูปที่ 138)

โปรดทราบว่าคุณสามารถเลือกจุด A ได้ตามใจชอบ โดยเฉพาะอย่างยิ่ง มันสามารถอยู่บนเส้นใดเส้นหนึ่งเหล่านี้ได้ ถ้าตรง และ ตัดกัน จากนั้น A สามารถใช้เป็นจุดตัดของเส้นเหล่านี้ ( 1 = ลและ 1 = ม).

มุมระหว่างเส้นไม่ขนาน และ คือค่าของมุมที่เล็กที่สุดที่อยู่ติดกันซึ่งเกิดจากเส้นตัดกัน 1 และ 1 ( 1 - ล, 1 - ม- มุมระหว่างเส้นคู่ขนานถือว่าเท่ากับศูนย์

มุมระหว่างเส้นตรง และ แสดงโดย \(\widehat((l;m))\) จากคำจำกัดความจะเป็นไปตามว่าหากวัดเป็นองศาแล้วจะเป็น 0° < \(\หมวกกว้าง((l;m)) \) < 90° และถ้าเป็นเรเดียน ก็จะเป็น 0 < \(\หมวกกว้าง((l;m)) \) < π / 2 .

งาน.ให้ลูกบาศก์ ABCDA 1 B 1 C 1 D 1 (รูปที่ 139)

ค้นหามุมระหว่างเส้นตรง AB และ DC 1

เส้นตรงตัดกัน AB และ DC 1 เนื่องจากเส้นตรง DC ขนานกับเส้นตรง AB มุมระหว่างเส้นตรง AB และ DC 1 ตามคำจำกัดความ จะเท่ากับ \(\หมวกกว้าง(C_(1)DC)\)

ดังนั้น \(\หมวกกว้าง((AB;DC_1))\) = 45°

โดยตรง และ ถูกเรียกว่า ตั้งฉาก, ถ้า \(\widehat((l;m)) \) = π / 2. ตัวอย่างเช่นในลูกบาศก์

การคำนวณมุมระหว่างเส้นตรง

ปัญหาในการคำนวณมุมระหว่างเส้นตรงสองเส้นในอวกาศได้รับการแก้ไขในลักษณะเดียวกับในระนาบ ให้เราแสดงด้วย φ ขนาดของมุมระหว่างเส้น 1 และ 2 และถึง ψ - ขนาดของมุมระหว่างเวกเตอร์ทิศทาง และ เส้นตรงเหล่านี้

แล้วถ้า

ψ <90° (рис. 206, а), то φ = ψ; если же ψ >90° (รูปที่ 206.6) จากนั้น φ = 180° - ψ แน่นอน ในทั้งสองกรณี ความเท่าเทียมกัน cos φ = |cos ψ| เป็นจริง ตามสูตร (โคไซน์ของมุมระหว่างเวกเตอร์ที่ไม่ใช่ศูนย์ a และ b เท่ากับผลคูณสเกลาร์ของเวกเตอร์เหล่านี้หารด้วยผลคูณของความยาว) เรามี

$$ cos\psi = cos\widehat((a; b)) = \frac(a\cdot b)(|a|\cdot |b|) $$

เพราะฉะนั้น,

$$ cos\phi = \frac(|a\cdot b|)(|a|\cdot |b|) $$

ให้เส้นตรงถูกกำหนดโดยสมการบัญญัติของมัน

$$ \frac(x-x_1)(a_1)=\frac(y-y_1)(a_2)=\frac(z-z_1)(a_3) \;\; และ \;\; \frac(x-x_2)(b_1)=\frac(y-y_2)(b_2)=\frac(z-z_2)(b_3) $$

จากนั้นมุม φ ระหว่างเส้นจะถูกกำหนดโดยใช้สูตร

$$ cos\phi = \frac(|a_(1)b_1+a_(2)b_2+a_(3)b_3|)(\sqrt((a_1)^2+(a_2)^2+(a_3)^2 )\sqrt((b_1)^2+(b_2)^2+(b_3)^2)) (1)$$

หากเส้นใดเส้นหนึ่ง (หรือทั้งสองเส้น) ถูกกำหนดโดยสมการที่ไม่ใช่แบบบัญญัติ คุณจะต้องคำนวณมุมโดยต้องหาพิกัดของเวกเตอร์ทิศทางของเส้นเหล่านี้ จากนั้นใช้สูตร (1)

ภารกิจที่ 1คำนวณมุมระหว่างเส้น

$$ \frac(x+3)(-\sqrt2)=\frac(y)(\sqrt2)=\frac(z-7)(-2) \;\;และ\;\; \frac(x)(\sqrt3)=\frac(y+1)(\sqrt3)=\frac(z-1)(\sqrt6) $$

เวกเตอร์ทิศทางของเส้นตรงมีพิกัด:

ก = (-√2 ; √2 ; -2), = (√3 ; √3 ; √6 ).

เราพบโดยใช้สูตร (1)

$$ cos\phi = \frac(|-\sqrt6+\sqrt6-2\sqrt6|)(\sqrt(2+2+4)\sqrt(3+3+6))=\frac(2\sqrt6)( 2\sqrt2\cdot 2\sqrt3)=\frac(1)(2) $$

ดังนั้น มุมระหว่างเส้นเหล่านี้คือ 60°

ภารกิจที่ 2คำนวณมุมระหว่างเส้น

$$ \begin(กรณี)3x-12z+7=0\\x+y-3z-1=0\end(กรณี) และ \begin(กรณี)4x-y+z=0\\y+z+1 =0\end(กรณี) $$

ด้านหลังเวกเตอร์นำทาง ในบรรทัดแรก เราใช้ผลคูณเวกเตอร์ของเวกเตอร์ปกติ n 1 = (3; 0; -12) และ n 2 = (1; 1; -3) ระนาบที่กำหนดเส้นนี้ ใช้สูตร \(=\begin(vmatrix) i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end(vmatrix) \) ที่เราได้รับ

$$ a==\begin(vmatrix) i & j & k \\ 3 & 0 & -12 \\ 1 & 1 & -3 \end(vmatrix)=12i-3i+3k $$

ในทำนองเดียวกัน เราจะพบเวกเตอร์ทิศทางของเส้นตรงเส้นที่สอง:

$$ b=\begin(vmatrix) i & j & k \\ 4 & -1 & 1 \\ 0 & 1 & 1 \end(vmatrix)=-2i-4i+4k $$

แต่การใช้สูตร (1) เราคำนวณโคไซน์ของมุมที่ต้องการ:

$$ cos\phi = \frac(|12\cdot (-2)-3(-4)+3\cdot 4|)(\sqrt(12^2+3^2+3^2)\sqrt(2 ^2+4^2+4^2))=0 $$

ดังนั้น มุมระหว่างเส้นเหล่านี้คือ 90°

ภารกิจที่ 3ในปิรามิดสามเหลี่ยม MABC ขอบ MA, MB และ MC ตั้งฉากกัน (รูปที่ 207)

ความยาวคือ 4, 3, 6 ตามลำดับ จุด D คือจุดกึ่งกลาง [MA] ค้นหามุม φ ระหว่างเส้น CA และ DB

ให้ CA และ DB เป็นเวกเตอร์ทิศทางของเส้นตรง CA และ DB

สมมติว่าจุด M เป็นที่มาของพิกัด ตามเงื่อนไขของสมการ เรามี A (4; 0; 0), B(0; 0; 3), C(0; 6; 0), D (2; 0; 0) ดังนั้น \(\overrightarrow(CA)\) = (4; - 6;0), \(\overrightarrow(DB)\)= (-2; 0; 3) ลองใช้สูตร (1):

$$ cos\phi=\frac(|4\cdot (-2)+(-6)\cdot 0+0\cdot 3|)(\sqrt(16+36+0)\sqrt(4+0+9 )) $$

จากการใช้ตารางโคไซน์ เราพบว่ามุมระหว่างเส้นตรง CA และ DB อยู่ที่ประมาณ 72°

วัสดุนี้มีไว้สำหรับแนวคิดเช่นมุมระหว่างเส้นตัดกันสองเส้น ในย่อหน้าแรกเราจะอธิบายว่ามันคืออะไรและแสดงไว้ในภาพประกอบ จากนั้นเราจะดูว่าคุณสามารถหาไซน์ โคไซน์ของมุมนี้และมุมนั้นได้อย่างไร (เราจะพิจารณากรณีที่มีระนาบและพื้นที่สามมิติแยกกัน) เราจะให้สูตรที่จำเป็นและแสดงพร้อมตัวอย่างว่ามันเป็นอย่างไร ใช้ในทางปฏิบัติ

ยานเดกซ์ RTB R-A-339285-1

เพื่อที่จะเข้าใจว่ามุมที่เกิดขึ้นเมื่อเส้นตรงสองเส้นตัดกันคืออะไร เราต้องจำคำจำกัดความของมุม ความตั้งฉาก และจุดตัดกัน

คำจำกัดความ 1

เราเรียกเส้นตรงสองเส้นที่ตัดกันหากมีจุดร่วมจุดเดียว จุดนี้เรียกว่าจุดตัดกันของเส้นสองเส้น

เส้นตรงแต่ละเส้นจะถูกหารด้วยจุดตัดกันเป็นรังสี เส้นตรงทั้งสองประกอบกันเป็นมุม 4 มุม โดย 2 มุมเป็นแนวตั้ง และอีก 2 มุมอยู่ติดกัน ถ้าเรารู้ขนาดของอันใดอันหนึ่ง เราก็จะสามารถกำหนดอันที่เหลือได้

สมมุติว่าเรารู้ว่ามุมใดมุมหนึ่งเท่ากับ α ในกรณีนี้ มุมที่อยู่ในแนวตั้งเทียบกับมุมนั้นจะเท่ากับ α เช่นกัน หากต้องการหามุมที่เหลือ เราต้องคำนวณความแตกต่าง 180 ° - α ถ้า α เท่ากับ 90 องศา มุมทั้งหมดจะเป็นมุมฉาก เส้นที่ตัดกันที่มุมฉากเรียกว่าเส้นตั้งฉาก (บทความแยกต่างหากเกี่ยวกับแนวคิดเรื่องตั้งฉาก)

ลองดูที่ภาพ:

มาดูการกำหนดคำจำกัดความหลักกันดีกว่า

คำจำกัดความ 2

มุมที่เกิดจากเส้นตัดกันสองเส้นคือการวัดมุมที่เล็กกว่าของมุมทั้งสี่ที่ประกอบเป็นเส้นทั้งสองนี้

ข้อสรุปที่สำคัญจะต้องได้มาจากคำจำกัดความ: ขนาดของมุมในกรณีนี้จะแสดงด้วยจำนวนจริงใด ๆ ในช่วงเวลา (0, 90] หากเส้นตั้งฉากมุมระหว่างเส้นเหล่านั้นจะเป็นเช่นไร เท่ากับ 90 องศา

ความสามารถในการค้นหาการวัดมุมระหว่างเส้นตัดกันสองเส้นมีประโยชน์ในการแก้ปัญหาในทางปฏิบัติหลายอย่าง สามารถเลือกวิธีการแก้ปัญหาได้จากหลายตัวเลือก

ขั้นแรก เราสามารถใช้วิธีการทางเรขาคณิตได้ ถ้าเรารู้บางอย่างเกี่ยวกับมุมเสริม เราก็สามารถเชื่อมโยงมันกับมุมที่เราต้องการได้โดยใช้คุณสมบัติของตัวเลขที่เท่ากันหรือคล้ายกัน ตัวอย่างเช่น ถ้าเรารู้ด้านของสามเหลี่ยมและจำเป็นต้องคำนวณมุมระหว่างเส้นตรงที่ด้านเหล่านี้ตั้งอยู่ ทฤษฎีบทโคไซน์ก็เหมาะสมสำหรับการแก้โจทย์ หากเรามีสามเหลี่ยมมุมฉากในสภาพของเรา ในการคำนวณ เราจะต้องรู้ไซน์ โคไซน์ และแทนเจนต์ของมุมด้วย

วิธีการประสานงานยังสะดวกมากสำหรับการแก้ปัญหาประเภทนี้ ให้เราอธิบายวิธีการใช้อย่างถูกต้อง

เรามีระบบพิกัดสี่เหลี่ยม (คาร์ทีเซียน) O x y โดยให้เส้นตรงสองเส้น เรามาแสดงด้วยตัวอักษร a และ b เส้นตรงสามารถอธิบายได้โดยใช้สมการบางประการ เส้นเดิมมีจุดตัด M จะกำหนดมุมที่ต้องการได้อย่างไร (แสดงว่าเป็น α) ระหว่างเส้นตรงเหล่านี้

เริ่มต้นด้วยการกำหนดหลักการพื้นฐานของการหามุมภายใต้เงื่อนไขที่กำหนด

เรารู้ว่าแนวคิดของเส้นตรงมีความสัมพันธ์อย่างใกล้ชิดกับแนวคิดเช่นเวกเตอร์ทิศทางและเวกเตอร์ปกติ หากเรามีสมการของเส้นตรงเส้นหนึ่ง เราก็สามารถหาพิกัดของเวกเตอร์เหล่านี้จากเส้นนั้นได้ เราสามารถทำได้สำหรับเส้นตัดกันสองเส้นพร้อมกัน

มุมที่ต่อด้วยเส้นตัดกันสองเส้นสามารถพบได้โดยใช้:

  • มุมระหว่างเวกเตอร์ทิศทาง
  • มุมระหว่างเวกเตอร์ปกติ
  • มุมระหว่างเวกเตอร์ปกติของเส้นหนึ่งกับเวกเตอร์ทิศทางของอีกเส้นหนึ่ง

ตอนนี้เรามาดูแต่ละวิธีแยกกัน

1. สมมติว่าเรามีเส้นตรง a ที่มีเวกเตอร์ทิศทาง a → = (a x, a y) และเส้นตรง b ที่มีเวกเตอร์ทิศทาง b → (b x, b y) ทีนี้ลองพลอตเวกเตอร์สองตัว a → และ b → จากจุดตัดกัน หลังจากนี้เราจะเห็นว่าแต่ละคนจะอยู่เป็นเส้นตรงของตัวเอง จากนั้นเรามีสี่ตัวเลือกสำหรับการจัดเรียงแบบสัมพันธ์กัน ดูภาพประกอบ:

ถ้ามุมระหว่างเวกเตอร์สองตัวไม่เป็นมุมป้าน มันจะเท่ากับมุมที่เราต้องการระหว่างเส้นตัดกัน a และ b หากเป็นมุมป้าน มุมที่ต้องการจะเท่ากับมุมที่อยู่ติดกับมุม a →, b → ^ ดังนั้น α = a → , b → ^ ถ้า a → , b → ^ ≤ 90 ° และ α = 180 ° - a → , b → ^ ถ้า a → , b → ^ > 90 ° .

จากข้อเท็จจริงที่ว่าโคไซน์ของมุมเท่ากันเท่ากัน เราสามารถเขียนความเท่าเทียมกันที่เกิดขึ้นใหม่ได้ดังนี้: cos α = cos a →, b → ^, ถ้า a →, b → ^ ≤ 90 °; cos α = cos 180 ° - a →, b → ^ = - cos a →, b → ^, ถ้า a →, b → ^ > 90 °

ในกรณีที่สอง ใช้สูตรลดขนาด ดังนั้น,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^< 0 ⇔ cos α = cos a → , b → ^

มาเขียนสูตรสุดท้ายด้วยคำพูด:

คำจำกัดความ 3

โคไซน์ของมุมที่เกิดจากเส้นตรงสองเส้นที่ตัดกันจะเท่ากับโมดูลัสของโคไซน์ของมุมระหว่างเวกเตอร์ทิศทาง

รูปแบบทั่วไปของสูตรสำหรับโคไซน์ของมุมระหว่างเวกเตอร์สองตัว a → = (a x , a y) และ b → = (b x , by) มีลักษณะดังนี้:

เพราะ → , b → ^ = a → , b → ^ a → b → = a x b x + a y + by a x 2 + a y 2 b x 2 + b y 2

จากนั้นเราสามารถหาสูตรสำหรับโคไซน์ของมุมระหว่างเส้นตรงสองเส้นที่กำหนดได้:

cos α = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2 = a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

จากนั้นสามารถหามุมได้โดยใช้สูตรต่อไปนี้:

α = a rc cos a x b x + a y + b y a x 2 + a y 2 b x 2 + b y 2

โดยที่ a → = (a x , a y) และ b → = (b x , b y) คือเวกเตอร์ทิศทางของเส้นที่กำหนด

ลองยกตัวอย่างการแก้ปัญหา

ตัวอย่างที่ 1

ในระบบพิกัดสี่เหลี่ยมบนเครื่องบิน จะมีเส้นตรงสองเส้นที่ตัดกัน a และ b มาให้ อธิบายได้ด้วยสมการพาราเมตริก x = 1 + 4 · แลมซี = 2 + แลมแลม ∈ R และ x 5 = y - 6 - 3 คำนวณมุมระหว่างเส้นเหล่านี้

สารละลาย

เรามีสมการพาราเมตริกในเงื่อนไขของเรา ซึ่งหมายความว่าสำหรับเส้นนี้เราสามารถเขียนพิกัดของเวกเตอร์ทิศทางได้ทันที ในการทำเช่นนี้เราจำเป็นต้องรับค่าสัมประสิทธิ์ของพารามิเตอร์เช่น เส้นตรง x = 1 + 4 · แลม y = 2 + แลมแล ∈ R จะมีเวกเตอร์ทิศทาง a → = (4, 1)

บรรทัดที่สองอธิบายโดยใช้สมการมาตรฐาน x 5 = y - 6 - 3 ตรงนี้เราสามารถหาพิกัดจากตัวส่วนได้ ดังนั้น เส้นตรงนี้จึงมีเวกเตอร์ทิศทาง b → = (5 , - 3)

ต่อไป เราจะมุ่งตรงไปที่การหามุม เมื่อต้องการทำเช่นนี้ เพียงแทนที่พิกัดที่มีอยู่ของเวกเตอร์สองตัวลงในสูตรข้างต้น α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 เราได้รับสิ่งต่อไปนี้:

α = a rc cos 4 5 + 1 (- 3) 4 2 + 1 2 5 2 + (- 3) 2 = a rc cos 17 17 34 = a rc cos 1 2 = 45 °

คำตอบ: เส้นตรงเหล่านี้ทำมุม 45 องศา

เราสามารถแก้ปัญหาที่คล้ายกันได้โดยการหามุมระหว่างเวกเตอร์ปกติ หากเรามีเส้นตรง a ที่มีเวกเตอร์ปกติ n a → = (n a x , n a y) และเส้น b ที่มีเวกเตอร์ปกติ n b → = (n b x , n b y) แล้วมุมระหว่างพวกมันจะเท่ากับมุมระหว่าง n a → และ n b → หรือมุมที่จะอยู่ติดกับ n a →, n b → ^ วิธีการนี้แสดงไว้ในภาพ:

สูตรคำนวณโคไซน์ของมุมระหว่างเส้นตัดกับมุมนี้เองโดยใช้พิกัดของเวกเตอร์ปกติมีลักษณะดังนี้:

cos α = cos n a → , n b → ^ = n a x n b x + n a y + n by n a x 2 + n a y 2 n b x 2 + n b y 2 α = a r c cos n a x n b x + n a y + n by n a x 2 + n a y 2 n b x 2 + n b y 2

โดยที่ n a → และ n b → แสดงถึงเวกเตอร์ปกติของเส้นตรงที่กำหนดสองเส้น

ตัวอย่างที่ 2

ในระบบพิกัดสี่เหลี่ยม เส้นตรงสองเส้นถูกกำหนดโดยใช้สมการ 3 x + 5 y - 30 = 0 และ x + 4 y - 17 = 0 ค้นหาไซน์และโคไซน์ของมุมระหว่างพวกมันกับขนาดของมุมนี้เอง

สารละลาย

เส้นเดิมระบุโดยใช้สมการเส้นปกติในรูปแบบ A x + B y + C = 0 เราแทนเวกเตอร์ปกติเป็น n → = (A, B) ลองหาพิกัดของเวกเตอร์ปกติตัวแรกสำหรับหนึ่งบรรทัดแล้วเขียนมัน: n a → = (3, 5) . สำหรับเส้นที่สอง x + 4 y - 17 = 0 เวกเตอร์ปกติจะมีพิกัด n b → = (1, 4) ตอนนี้ให้เพิ่มค่าที่ได้รับลงในสูตรแล้วคำนวณผลรวม:

cos α = cos n a → , n b → ^ = 3 1 + 5 4 3 2 + 5 2 1 2 + 4 2 = 23 34 17 = 23 2 34

ถ้าเรารู้โคไซน์ของมุม เราก็สามารถคำนวณไซน์ของมันได้โดยใช้เอกลักษณ์ตรีโกณมิติพื้นฐาน เนื่องจากมุม α ที่เกิดจากเส้นตรงไม่ป้าน ดังนั้น sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34

ในกรณีนี้ α = a rc cos 23 2 34 = a rc sin 7 2 34

คำตอบ: cos α = 23 2 34, sin α = 7 2 34, α = a rc cos 23 2 34 = a rc sin 7 2 34

มาวิเคราะห์กรณีสุดท้ายกัน - ค้นหามุมระหว่างเส้นตรงถ้าเรารู้พิกัดของเวกเตอร์ทิศทางของเส้นตรงเส้นหนึ่งกับเวกเตอร์ปกติของอีกเส้นหนึ่ง

สมมติว่าเส้นตรง a มีเวกเตอร์ทิศทาง a → = (a x , a y) และเส้นตรง b มีเวกเตอร์ปกติ n b → = (n b x , n b y) เราจำเป็นต้องแยกเวกเตอร์เหล่านี้ออกจากจุดตัดกัน และพิจารณาตัวเลือกทั้งหมดสำหรับตำแหน่งสัมพันธ์กัน ดูในภาพ:

หากมุมระหว่างเวกเตอร์ที่กำหนดไม่เกิน 90 องศา ปรากฎว่ามุมระหว่าง a และ b จะมาเสริมกับมุมฉาก

ก → , n ข → ^ = 90 ° - α ถ้า → , n ข → ^ ≤ 90 ° .

หากน้อยกว่า 90 องศา เราจะได้สิ่งต่อไปนี้:

ก → , n ข → ^ > 90 ° จากนั้น → , n ข → ^ = 90 ° + α

ใช้กฎความเท่าเทียมกันของโคไซน์ของมุมเท่ากัน เราเขียนว่า:

cos a → , n b → ^ = cos (90 ° - α) = sin α สำหรับ a → , n b → ^ ≤ 90 ° .

cos → , n b → ^ = cos 90 ° + α = - sin α สำหรับ → , n b → ^ > 90 ° .

ดังนั้น,

บาป α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , ก → , n ข → ^ > 0 - เพราะ → , n ข → ^ , → , n ข → ^< 0 ⇔ ⇔ sin α = cos a → , n b → ^

ให้เรากำหนดข้อสรุป

คำจำกัดความที่ 4

ในการค้นหาไซน์ของมุมระหว่างเส้นสองเส้นที่ตัดกันบนระนาบ คุณต้องคำนวณโมดูลัสของโคไซน์ของมุมระหว่างเวกเตอร์ทิศทางของเส้นแรกกับเวกเตอร์ปกติของเส้นที่สอง

มาเขียนสูตรที่จำเป็นกัน การหาไซน์ของมุม:

บาป α = cos a → , n b → ^ = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

การค้นหามุมนั้นเอง:

α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2

โดยที่ a → คือเวกเตอร์ทิศทางของเส้นแรก และ n b → คือเวกเตอร์ปกติของเส้นที่สอง

ตัวอย่างที่ 3

เส้นตัดกันสองเส้นกำหนดโดยสมการ x - 5 = y - 6 3 และ x + 4 y - 17 = 0 ค้นหามุมของจุดตัด

สารละลาย

เราใช้พิกัดของไกด์และเวกเตอร์ปกติจากสมการที่กำหนด ปรากฎว่า a → = (- 5, 3) และ n → b = (1, 4) เราใช้สูตร α = a r c sin = a x n b x + a y n b y a x 2 + a y 2 n b x 2 + n b y 2 และคำนวณ:

α = a rc sin = - 5 1 + 3 4 (- 5) 2 + 3 2 1 2 + 4 2 = a rc sin 7 2 34

โปรดทราบว่าเราได้นำสมการจากปัญหาครั้งก่อนและได้ผลลัพธ์เดียวกันทุกประการ แต่ใช้วิธีที่แตกต่างออกไป

คำตอบ:α = a rc บาป 7 2 34

ให้เรานำเสนออีกวิธีหนึ่งในการค้นหามุมที่ต้องการโดยใช้สัมประสิทธิ์เชิงมุมของเส้นตรงที่กำหนด

เรามีเส้น a ซึ่งกำหนดไว้ในระบบพิกัดสี่เหลี่ยมโดยใช้สมการ y = k 1 x + b 1 และเส้น b กำหนดเป็น y = k 2 x + b 2 นี่คือสมการของเส้นตรงที่มีความชัน เพื่อหามุมตัดกัน เราใช้สูตร:

α = a rc cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 โดยที่ k 1 และ k 2 คือความชันของเส้นที่กำหนด เพื่อให้ได้บันทึกนี้ มีการใช้สูตรในการกำหนดมุมผ่านพิกัดของเวกเตอร์ปกติ

ตัวอย่างที่ 4

เส้นตรงสองเส้นตัดกันในระนาบ โดยสมการ y = - 3 5 x + 6 และ y = - 1 4 x + 17 4 คำนวณค่าของมุมตัดกัน

สารละลาย

ค่าสัมประสิทธิ์เชิงมุมของเส้นตรงของเราเท่ากับ k 1 = - 3 5 และ k 2 = - 1 4 ลองเพิ่มพวกมันลงในสูตร α = a rc cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 แล้วคำนวณ:

α = a rc cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a rc cos 23 20 34 24 · 17 16 = a rc cos 23 2 34

คำตอบ:α = a rc cos 23 2 34

ในบทสรุปของย่อหน้านี้ ควรสังเกตว่าสูตรการหามุมที่ระบุในที่นี้ไม่จำเป็นต้องเรียนรู้ด้วยใจจริง ในการทำเช่นนี้ ก็เพียงพอแล้วที่จะทราบพิกัดของเส้นบอกแนวและ/หรือเวกเตอร์ปกติของเส้นที่กำหนด และสามารถระบุได้โดยใช้สมการประเภทต่างๆ แต่ควรจำหรือเขียนสูตรในการคำนวณโคไซน์ของมุมจะดีกว่า

วิธีการคำนวณมุมระหว่างเส้นที่ตัดกันในอวกาศ

การคำนวณมุมดังกล่าวสามารถลดลงเป็นการคำนวณพิกัดของเวกเตอร์ทิศทางและกำหนดขนาดของมุมที่เกิดจากเวกเตอร์เหล่านี้ สำหรับตัวอย่างดังกล่าว จะใช้เหตุผลเดียวกันกับที่เราให้ไว้ก่อนหน้านี้

สมมติว่าเรามีระบบพิกัดสี่เหลี่ยมที่อยู่ในอวกาศสามมิติ ประกอบด้วยเส้นตรงสองเส้น a และ b โดยมีจุดตัด M ในการคำนวณพิกัดของเวกเตอร์ทิศทาง เราจำเป็นต้องรู้สมการของเส้นเหล่านี้ ให้เราแสดงเวกเตอร์ทิศทาง a → = (a x , a y , a z) และ b → = (b x , b y , b z) . ในการคำนวณโคไซน์ของมุมระหว่างพวกมัน เราใช้สูตร:

cos α = cos a → , b → ^ = a → , b → a → b → = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

เพื่อหามุม เราต้องการสูตรนี้:

α = a r c cos a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2

ตัวอย่างที่ 5

เรามีเส้นตรงที่กำหนดในปริภูมิสามมิติโดยใช้สมการ x 1 = y - 3 = z + 3 - 2 เป็นที่รู้กันว่ามันตัดกับแกน O z คำนวณมุมตัดแกนและโคไซน์ของมุมนั้น

สารละลาย

ให้เราแสดงมุมที่ต้องคำนวณด้วยตัวอักษร α ลองเขียนพิกัดของเวกเตอร์ทิศทางสำหรับเส้นตรงเส้นแรก – a → = (1, - 3, - 2) . สำหรับแกนประยุกต์ เราสามารถใช้เวกเตอร์พิกัด k → = (0, 0, 1) เป็นแนวทางได้ เราได้รับข้อมูลที่จำเป็นแล้วและสามารถเพิ่มลงในสูตรที่ต้องการได้:

cos α = cos a → , k → ^ = a → , k → a → k → = 1 0 - 3 0 - 2 1 1 2 + (- 3) 2 + (- 2) 2 0 2 + 0 2 + 1 2 = 2 8 = 1 2

เป็นผลให้เราพบว่ามุมที่เราต้องการจะเท่ากับ a rc cos 1 2 = 45 °

คำตอบ: cos α = 1 2 , α = 45 ° .

หากคุณสังเกตเห็นข้อผิดพลาดในข้อความ โปรดไฮไลต์แล้วกด Ctrl+Enter

คำนิยาม.ถ้าให้เส้นตรงสองเส้น y = k 1 x + b 1, y = k 2 x + b 2 มุมแหลมระหว่างเส้นเหล่านี้จะถูกกำหนดเป็น

เส้นตรงสองเส้นขนานกันถ้า k 1 = k 2 เส้นตรงสองเส้นจะตั้งฉากกันถ้า k 1 = -1/ k 2

ทฤษฎีบท.เส้น Ax + Bу + C = 0 และ A 1 x + B 1 y + C 1 = 0 ขนานกันเมื่อสัมประสิทธิ์ A 1 = แลม A, B 1 = แลมบ์เป็นสัดส่วน ถ้า C 1 = แลมซีด้วย แสดงว่าเส้นตรง พิกัดของจุดตัดกันของเส้นตรงสองเส้นพบว่าเป็นวิธีแก้ระบบสมการของเส้นเหล่านี้

สมการของเส้นตรงที่ผ่านจุดที่กำหนด

ตั้งฉากกับเส้นที่กำหนด

คำนิยาม.เส้นตรงที่ผ่านจุด M 1 (x 1, y 1) และตั้งฉากกับเส้นตรง y = kx + b แสดงด้วยสมการ:

ระยะทางจากจุดหนึ่งไปยังอีกบรรทัด

ทฤษฎีบท.หากกำหนดจุด M(x 0, y 0) ดังนั้นระยะทางถึงเส้น Ax + Bу + C = 0 จะถูกกำหนดเป็น

.

การพิสูจน์.ให้จุด M 1 (x 1, y 1) เป็นฐานของจุดตั้งฉากที่ตกลงจากจุด M ไปยังเส้นตรงที่กำหนด จากนั้นระยะห่างระหว่างจุด M และ M 1:

(1)

พิกัด x 1 และ y 1 สามารถพบได้โดยการแก้ระบบสมการ:

สมการที่สองของระบบคือสมการของเส้นที่ผ่านจุดที่กำหนด M 0 ซึ่งตั้งฉากกับเส้นที่กำหนด หากเราแปลงสมการแรกของระบบให้อยู่ในรูปแบบ:

A(x – x 0) + B(y – y 0) + ขวาน 0 + โดย 0 + C = 0,

จากนั้นเมื่อแก้ไขเราจะได้:

เมื่อแทนนิพจน์เหล่านี้เป็นสมการ (1) เราจะพบว่า:

ทฤษฎีบทได้รับการพิสูจน์แล้ว

ตัวอย่าง- กำหนดมุมระหว่างเส้น: y = -3 x + 7; y = 2 x + 1

กิโล 1 = -3; เค 2 = 2; ทีจีφ = - φ= พี /4.

ตัวอย่าง- แสดงว่าเส้นตรง 3x – 5y + 7 = 0 และ 10x + 6y – 3 = 0 ตั้งฉากกัน

สารละลาย- เราพบว่า: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1 ดังนั้น เส้นตรงทั้งสองจึงตั้งฉากกัน

ตัวอย่าง- ให้เป็นจุดยอดของสามเหลี่ยม A(0; 1), B (6; 5), C (12; -1) ค้นหาสมการของความสูงที่ดึงมาจากจุดยอด C

สารละลาย- เราพบสมการของด้าน AB: - 4 x = 6 ปี – 6;

2 x – 3 ปี + 3 = 0;

สมการความสูงที่ต้องการมีรูปแบบ: Ax + By + C = 0 หรือ y = kx + b เค = . แล้ว ย = . เพราะ ความสูงผ่านจุด C จากนั้นพิกัดจะเป็นไปตามสมการนี้: จากโดยที่ b = 17. รวม: .

คำตอบ: 3 x + 2 y – 34 = 0

สมการของเส้นตรงที่ผ่านจุดที่กำหนดในทิศทางที่กำหนด สมการของเส้นตรงที่ผ่านจุดที่กำหนดสองจุด มุมระหว่างเส้นตรงสองเส้น ภาวะความขนานและความตั้งฉากของเส้นตรงสองเส้น การกำหนดจุดตัดของเส้นสองเส้น

1. สมการของเส้นตรงที่ผ่านจุดที่กำหนด (x 1 , 1) ในทิศทางที่กำหนดซึ่งกำหนดโดยความชัน เค,

- 1 = เค(x - x 1). (1)

สมการนี้กำหนดเส้นดินสอที่ลากผ่านจุดหนึ่ง (x 1 , 1) ซึ่งเรียกว่าศูนย์กลางลำแสง

2. สมการของเส้นที่ผ่านจุดสองจุด: (x 1 , 1) และ บี(x 2 , 2) เขียนดังนี้:

ค่าสัมประสิทธิ์เชิงมุมของเส้นตรงที่ผ่านจุดที่กำหนดสองจุดถูกกำหนดโดยสูตร

3. มุมระหว่างเส้นตรง และ บีคือมุมที่ต้องหมุนเส้นตรงเส้นแรก บริเวณจุดตัดของเส้นเหล่านี้ทวนเข็มนาฬิกาจนตรงกับเส้นที่สอง บี- ถ้าเส้นตรงสองเส้นถูกกำหนดโดยสมการที่มีความชัน

= เค 1 x + บี 1 ,

= เค 2 x + บี 2 , (4)

จากนั้นมุมระหว่างพวกมันจะถูกกำหนดโดยสูตร

ควรสังเกตว่าในตัวเศษของเศษส่วนความชันของเส้นแรกจะถูกลบออกจากความชันของเส้นที่สอง

หากให้สมการเส้นตรงในรูปแบบทั่วไป

1 x + บี 1 + 1 = 0,

2 x + บี 2 + 2 = 0, (6)

มุมระหว่างพวกมันถูกกำหนดโดยสูตร

4. เงื่อนไขความขนานของสองบรรทัด:

ก) หากเส้นถูกกำหนดโดยสมการ (4) ด้วยสัมประสิทธิ์เชิงมุม ดังนั้นเงื่อนไขที่จำเป็นและเพียงพอสำหรับการขนานกันคือความเท่าเทียมกันของสัมประสิทธิ์เชิงมุม:

เค 1 = เค 2 . (8)

b) สำหรับกรณีที่เส้นถูกกำหนดโดยสมการในรูปแบบทั่วไป (6) เงื่อนไขที่จำเป็นและเพียงพอสำหรับการขนานกันคือค่าสัมประสิทธิ์สำหรับพิกัดกระแสที่สอดคล้องกันในสมการนั้นเป็นสัดส่วน เช่น

5. เงื่อนไขความตั้งฉากของเส้นตรงสองเส้น:

ก) ในกรณีที่เส้นถูกกำหนดโดยสมการ (4) โดยมีค่าสัมประสิทธิ์เชิงมุม เงื่อนไขที่จำเป็นและเพียงพอสำหรับความตั้งฉากคือสัมประสิทธิ์เชิงมุมของเส้นนั้นมีขนาดผกผันและมีเครื่องหมายตรงกันข้าม กล่าวคือ

เงื่อนไขนี้สามารถเขียนอยู่ในแบบฟอร์มได้เช่นกัน

เค 1 เค 2 = -1. (11)

b) หากสมการของเส้นถูกกำหนดไว้ในรูปแบบทั่วไป (6) เงื่อนไขของการตั้งฉาก (จำเป็นและเพียงพอ) คือการตอบสนองความเท่าเทียมกัน

1 2 + บี 1 บี 2 = 0. (12)

6. พิกัดของจุดตัดกันของเส้นตรงสองเส้นหาได้โดยการแก้ระบบสมการ (6) เส้น (6) ตัดกันก็ต่อเมื่อเท่านั้น

1. เขียนสมการของเส้นตรงที่ผ่านจุด M โดยเส้นหนึ่งขนานและอีกเส้นตั้งฉากกับเส้นตรงที่กำหนด l

ก. ให้เส้นตรงสองเส้นดังที่ระบุไว้ในบทที่ 1 ก่อให้เกิดมุมบวกและมุมลบต่างๆ กัน ซึ่งอาจเป็นมุมแหลมหรือมุมป้านก็ได้ เมื่อรู้มุมใดมุมหนึ่ง เราก็สามารถหามุมอื่นได้อย่างง่ายดาย

อย่างไรก็ตาม สำหรับมุมทั้งหมดนี้ ค่าตัวเลขของแทนเจนต์จะเท่ากัน ความแตกต่างจะอยู่ในเครื่องหมายเท่านั้น

สมการของเส้น ตัวเลขคือเส้นโครงของเวกเตอร์ทิศทางของเส้นตรงเส้นแรกและเส้นที่สอง มุมระหว่างเวกเตอร์เหล่านี้เท่ากับมุมใดมุมหนึ่งที่เกิดจากเส้นตรง ดังนั้นปัญหาจึงอยู่ที่การกำหนดมุมระหว่างเวกเตอร์

เพื่อความง่าย เราสามารถตกลงกันว่ามุมระหว่างเส้นตรงสองเส้นถูกเข้าใจว่าเป็นมุมบวกเฉียบพลัน (เช่น ในรูปที่ 53)

แล้วแทนเจนต์ของมุมนี้จะเป็นบวกเสมอ ดังนั้น หากมีเครื่องหมายลบทางด้านขวาของสูตร (1) เราต้องละทิ้งมัน กล่าวคือ บันทึกเฉพาะค่าสัมบูรณ์เท่านั้น

ตัวอย่าง. กำหนดมุมระหว่างเส้นตรง

ตามสูตร (1) ที่เรามี

กับ. หากระบุว่าด้านใดของมุมเป็นจุดเริ่มต้นและด้านใดเป็นจุดสิ้นสุด เมื่อนับทิศทางของมุมทวนเข็มนาฬิกาเสมอ เราก็สามารถดึงบางสิ่งเพิ่มเติมจากสูตร (1) ได้ ดังที่เห็นได้ง่ายจากรูป 53 เครื่องหมายที่ได้รับทางด้านขวาของสูตร (1) จะระบุว่ามุมใด - แหลมหรือป้าน - เส้นตรงที่สองก่อตัวขึ้นกับมุมแรก

(อันที่จริง จากรูปที่ 53 เราจะเห็นว่ามุมระหว่างเวกเตอร์ทิศทางที่หนึ่งและที่สองนั้นเท่ากับมุมที่ต้องการระหว่างเส้นตรง หรือแตกต่างจากมุมนั้น ±180°)

ง. หากเส้นขนานกัน แล้วเวกเตอร์ทิศทางจะขนานกัน เมื่อใช้เงื่อนไขความขนานของเวกเตอร์สองตัว เราจะได้!

นี่เป็นเงื่อนไขที่จำเป็นและเพียงพอสำหรับการขนานกันของเส้นสองเส้น

ตัวอย่าง. โดยตรง

ขนานกันเพราะว่า

จ. ถ้าเส้นตั้งฉากแล้วเวกเตอร์ทิศทางก็จะตั้งฉากด้วย เมื่อใช้เงื่อนไขตั้งฉากของเวกเตอร์สองตัว เราจะได้เงื่อนไขตั้งฉากของเส้นตรงสองเส้น กล่าวคือ

ตัวอย่าง. โดยตรง

ตั้งฉากเพราะว่า

ในการเชื่อมต่อกับเงื่อนไขของการขนานและความตั้งฉาก เราจะแก้ไขปัญหาสองข้อต่อไปนี้

ฉ. ลากเส้นผ่านจุดที่ขนานกับเส้นที่กำหนด

การแก้ปัญหาจะดำเนินการเช่นนี้ เนื่องจากเส้นที่ต้องการขนานกับเส้นนี้ ดังนั้นสำหรับเวกเตอร์ทิศทางของมัน เราจึงสามารถใช้เส้นเดียวกันกับเส้นที่กำหนดได้ เช่น เวกเตอร์ที่มีเส้นโครง A และ B จากนั้นสมการของเส้นที่ต้องการจะถูกเขียนเป็น แบบฟอร์ม (§ 1)

ตัวอย่าง. สมการของเส้นตรงที่ผ่านจุด (1; 3) ขนานกับเส้นตรง

จะมีต่อไป!

ก. ลากเส้นผ่านจุดตั้งฉากกับเส้นที่กำหนด

ในที่นี้มันไม่เหมาะที่จะใช้เวกเตอร์ที่มีเส้นโครง A และเป็นเวกเตอร์นำทางอีกต่อไป แต่จำเป็นต้องใช้เวกเตอร์ตั้งฉากกับมัน ดังนั้นจึงต้องเลือกเส้นโครงของเวกเตอร์นี้ตามเงื่อนไขความตั้งฉากของเวกเตอร์ทั้งสอง กล่าวคือ ตามเงื่อนไข

เงื่อนไขนี้สามารถบรรลุได้หลายวิธีเนื่องจากนี่คือสมการหนึ่งที่ไม่ทราบค่าสองตัว แต่วิธีที่ง่ายที่สุดคือการหา หรือ จากนั้นสมการของเส้นที่ต้องการจะถูกเขียนในรูปแบบ

ตัวอย่าง. สมการของเส้นตรงที่ผ่านจุด (-7; 2) ในเส้นตั้งฉาก

ก็จะมีดังต่อไปนี้(ตามสูตรที่สอง)!

ชม. ในกรณีที่กำหนดเส้นตามสมการของแบบฟอร์ม

มุมระหว่างระนาบ

พิจารณาระนาบสองระนาบ α 1 และ α 2 ซึ่งกำหนดตามลำดับโดยสมการ:

ภายใต้ มุมระหว่างระนาบสองระนาบ เราจะเข้าใจมุมไดฮีดรัลอันใดอันหนึ่งที่เกิดจากระนาบเหล่านี้ เห็นได้ชัดว่ามุมระหว่างเวกเตอร์ปกติและระนาบ α 1 และ α 2 เท่ากับหนึ่งในมุมไดฮีดรัลที่อยู่ติดกันที่ระบุ หรือ - นั่นเป็นเหตุผล - เพราะ และ , ที่

.

ตัวอย่าง.กำหนดมุมระหว่างระนาบ x+2-3z+4=0 และ 2 x+3+z+8=0.

เงื่อนไขความขนานของระนาบทั้งสอง

ระนาบสองอัน α 1 และ α 2 จะขนานกันก็ต่อเมื่อเวกเตอร์ปกติของพวกมันขนานกัน ดังนั้น .

ดังนั้น ระนาบสองระนาบจะขนานกันก็ต่อเมื่อค่าสัมประสิทธิ์ของพิกัดที่สอดคล้องกันนั้นเป็นสัดส่วน:

หรือ

สภาพตั้งฉากของระนาบ

เห็นได้ชัดว่าระนาบสองระนาบตั้งฉากก็ต่อเมื่อเวกเตอร์ปกติของพวกมันตั้งฉากกัน และด้วยเหตุนี้ หรือ

ดังนั้น, .

ตัวอย่าง.

ตรงไปในอวกาศ

สมการเวกเตอร์สำหรับเส้น

สมการทางตรงพาราเมตริก

ตำแหน่งของเส้นในช่องว่างถูกกำหนดโดยการระบุจุดคงที่ใดๆ 1 และเวกเตอร์ขนานกับเส้นนี้

เรียกว่าเวกเตอร์ที่ขนานกับเส้นตรง คำแนะนำเวกเตอร์ของเส้นนี้

เลยปล่อยให้เป็นเส้นตรง ผ่านจุดหนึ่ง 1 (x 1 , 1 , z 1) นอนอยู่บนเส้นขนานกับเวกเตอร์ .

พิจารณาจุดใดก็ได้ ม(x,y,z)บนเส้นตรง จากรูปก็ชัดเจนว่า .

เวกเตอร์และเป็นเส้นตรง ดังนั้นจึงมีตัวเลขดังกล่าว ที, อะไร , ตัวคูณอยู่ที่ไหน ทีสามารถรับค่าตัวเลขใดๆ ก็ได้ ขึ้นอยู่กับตำแหน่งของจุด บนเส้นตรง ปัจจัย ทีเรียกว่าพารามิเตอร์ มีการกำหนดเวกเตอร์รัศมีของจุด 1 และ ตามลำดับ ผ่าน และ เราได้รับ สมการนี้เรียกว่า เวกเตอร์สมการของเส้นตรง มันแสดงให้เห็นว่าสำหรับแต่ละค่าพารามิเตอร์ ทีสอดคล้องกับเวกเตอร์รัศมีของจุดใดจุดหนึ่ง นอนเป็นเส้นตรง

ลองเขียนสมการนี้ในรูปแบบพิกัดกัน โปรดทราบว่า และจากที่นี่

สมการผลลัพธ์จะถูกเรียกว่า พารามิเตอร์สมการของเส้นตรง

เมื่อเปลี่ยนพารามิเตอร์ ทีพิกัดเปลี่ยนไป x, และ zและช่วงเวลา เคลื่อนที่เป็นเส้นตรง


สมการมาตรฐานของทางตรง

อนุญาต 1 (x 1 , 1 , z 1) – จุดที่วางอยู่บนเส้นตรง , และ คือเวกเตอร์ทิศทางของมัน ให้เราพิจารณาประเด็นตามอำเภอใจอีกครั้ง ม(x,y,z)และพิจารณาเวกเตอร์

เป็นที่แน่ชัดว่าเวกเตอร์นั้นอยู่ในแนวเดียวกัน ดังนั้นพิกัดที่สอดคล้องกันของพวกมันจะต้องเป็นสัดส่วน ดังนั้น

ตามบัญญัติสมการของเส้นตรง

หมายเหตุ 1.โปรดทราบว่าสมการมาตรฐานของเส้นตรงสามารถได้รับจากสมการพาราเมตริกโดยการกำจัดพารามิเตอร์ ที- อันที่จริงจากสมการพาราเมตริกที่เราได้รับ หรือ .

ตัวอย่าง.เขียนสมการของเส้นตรง ในรูปแบบพาราเมตริก

มาแสดงกันเถอะ จากที่นี่ x = 2 + 3ที, = –1 + 2ที, z = 1 –ที.

หมายเหตุ 2ปล่อยให้เส้นตรงตั้งฉากกับแกนพิกัดแกนใดแกนหนึ่ง เช่น แกน วัว- จากนั้นเวกเตอร์ทิศทางของเส้นตรงจะตั้งฉาก วัว, เพราะฉะนั้น, =0. ดังนั้น สมการพาราเมตริกของเส้นตรงจะอยู่ในรูปแบบ

การแยกพารามิเตอร์ออกจากสมการ ทีเราได้สมการของเส้นตรงในรูปแบบ

อย่างไรก็ตาม ในกรณีนี้ด้วย เราตกลงที่จะเขียนสมการมาตรฐานของเส้นตรงในรูปแบบอย่างเป็นทางการ - ดังนั้น หากตัวส่วนของเศษส่วนตัวใดตัวหนึ่งเป็นศูนย์ แสดงว่าเส้นตรงตั้งฉากกับแกนพิกัดที่สอดคล้องกัน

คล้ายกับสมการบัญญัติ สอดคล้องกับเส้นตรงที่ตั้งฉากกับแกน วัวและ เฮ้ยหรือขนานกับแกน ออนซ์.

ตัวอย่าง.

สมการทั่วไปของเส้นตรงเท่ากับเส้นตัดกันของระนาบสองระนาบ

ในทุกเส้นตรงในอวกาศมีระนาบจำนวนนับไม่ถ้วน สองตัวใดตัวหนึ่งตัดกัน ให้นิยามมันในอวกาศ ดังนั้น สมการของระนาบสองระนาบใดๆ เมื่อพิจารณารวมกัน จะแสดงสมการของเส้นนี้

โดยทั่วไปแล้ว ระนาบที่ไม่ขนานกันสองระนาบใดๆ ที่กำหนดโดยสมการทั่วไป

กำหนดเส้นตรงของจุดตัดของพวกเขา สมการเหล่านี้เรียกว่า สมการทั่วไปโดยตรง.

ตัวอย่าง.

สร้างเส้นที่กำหนดโดยสมการ

ในการสร้างเส้นตรง ก็เพียงพอที่จะหาจุดสองจุดใดก็ได้ วิธีที่ง่ายที่สุดคือการเลือกจุดตัดของเส้นตรงกับระนาบพิกัด เช่น จุดตัดกับระนาบ xOyเราได้รับจากสมการของเส้นตรง โดยสมมติว่า z= 0:

เมื่อแก้ไขระบบนี้แล้วเราจะพบประเด็น 1 (1;2;0).

ในทำนองเดียวกันสมมติว่า = 0 เราได้จุดตัดของเส้นตรงกับระนาบ xออซ:

จากสมการทั่วไปของเส้นตรง เราสามารถไปยังสมการมาตรฐานหรือสมการพาราเมตริกได้ ในการทำเช่นนี้คุณจะต้องค้นหาจุดใดจุดหนึ่ง 1 บนเส้นตรงและเวกเตอร์ทิศทางของเส้นตรง

พิกัดจุด 1 ที่เราได้รับจากระบบสมการนี้ โดยให้ค่าพิกัดใดค่าหนึ่งตามอำเภอใจ ในการค้นหาเวกเตอร์ทิศทาง โปรดทราบว่าเวกเตอร์นี้จะต้องตั้งฉากกับเวกเตอร์ปกติทั้งสองตัว และ - ดังนั้นเกินเวกเตอร์ทิศทางของเส้นตรง คุณสามารถหาผลคูณเวกเตอร์ของเวกเตอร์ปกติได้:

.

ตัวอย่าง.ให้สมการทั่วไปของเส้นตรง สู่รูปแบบบัญญัติ

ลองหาจุดนอนอยู่บนเส้นกัน ในการทำเช่นนี้ เราเลือกพิกัดใดพิกัดหนึ่งตามอำเภอใจ เช่น = 0 และแก้ระบบสมการ:

เวกเตอร์ปกติของระนาบที่กำหนดเส้นตรงมีพิกัด ดังนั้นเวกเตอร์ทิศทางจะเป็นเส้นตรง

- เพราะฉะนั้น, : .


มุมระหว่างเส้นตรง

มุมระหว่างเส้นตรงในอวกาศ เราจะเรียกมุมที่อยู่ติดกันใดๆ ที่เกิดจากเส้นตรงสองเส้นที่ลากผ่านจุดใดก็ได้ที่ขนานกับข้อมูล

ให้มีสองบรรทัดในช่องว่าง:

แน่นอนว่ามุม φ ระหว่างเส้นตรงสามารถใช้เป็นมุมระหว่างเวกเตอร์ทิศทางกับ ตั้งแต่ จากนั้นใช้สูตรสำหรับโคไซน์ของมุมระหว่างเวกเตอร์ที่เราได้รับ