В этом материале мы расскажем, как правильно выполнять сложение отрицательного и положительного числа. Сначала мы приведем основное правило такого сложения, а потом покажем, как оно применяется при решении задач.

Yandex.RTB R-A-339285-1

Основное правило сложения положительных и отрицательных чисел

Мы уже говорили ранее, что положительное число можно рассматривать как доход, а отрицательное – как убыток. Чтобы узнать величину дохода и расхода, надо смотреть на модули этих чисел. Если в итоге окажется, что наши расходы превышают доходы, то после их взаимного учета мы останемся должны, а если наоборот, то мы останемся в плюсе. Если же расходы равны доходам, то у нас будет нулевой остаток.

Используя приведенные выше рассуждения, можно вывести основное правило сложения чисел с разными знаками.

Определение 1

Для сложения положительного числа с отрицательным необходимо найти их модули и выполнить сравнение. Если значения окажутся равны, то мы имеем два слагаемых, которые являются противоположными числами, и их сумма будет нулевой. Если же они не равны, то нам надо учесть, что результат будет иметь тот же знак, что и большее число.

Таким образом, сложение в данном случае сводится к вычитанию из большего числа меньшего. Итог этого действия может быть разным: мы можем получить как положительное, так и отрицательное число. Нулевой результат тоже возможен.

Это правило распространяется на целые, рациональные и действительные числа.

Задачи на сложение положительного числа с отрицательным

Разберем, как применять на практике правило, озвученное выше. Возьмем для начала простой пример.

Пример 1

Вычислите сумму 2 + (- 5) .

Решение

Выполним последовательно шаги, которые мы изучили до этого. Найдем для начала модули исходных чисел, которые будут равны 2 и 5 . Больший модуль – 5 , поэтому запоминаем минус. Далее вычитаем из большего модуля меньший и получаем: 5 − 2 = 3 .

Ответ: (− 5) + 2 = − 3 .

Если в условиях задачи стоят рациональные числа с разными знаками, не являющиеся при этом целыми, то для удобства расчетов нужно представить их в виде десятичных или обыкновенных дробей. Возьмем такую задачу и решим ее.

Пример 2

Вычислите, сколько будет 2 1 8 + (- 1 , 25) .

Решение

Первым делом переведем смешанное число в обыкновенную дробь. Если вы не помните, как это делается, перечитайте соответствующую статью.

Десятичную дробь мы тоже представим в виде обыкновенной: - 1 , 25 = - 125 100 = - 5 4 .

После этого уже можно переходить к вычислению модулей и подсчету результата. Найдем модули: они будут равны 17 8 и 5 4 соответственно. Получившиеся дроби приведем к общему знаменателю и получим 17 8 и 10 8 .

Следующим шагом будет сравнение обыкновенных дробей. Поскольку числитель первой дроби больше, то 17 8 > 10 8 . Если слагаемое со знаком плюс у нас больше, то нам надо запомнить, что результат будет положительным.

17 8 - 10 8 = 17 - 10 8 = 7 8

Мы уже отмечали ранее, что результат у нас будет со знаком плюс: + 7 8 . Так как плюс писать необязательно, при записи ответа обойдемся без него.

Запишем весь ход решения:

2 1 8 + - 1 , 25 = 17 8 + - 5 4 = 17 8 + - 10 8 = 17 8 - 10 8 = 7 8

Ответ: 2 1 8 + - 1 , 25 = 7 8 .

Пример 3

Найдите, чему будет равна сумма 14 и - 14 .

Решение

Мы имеем два одинаковых слагаемых с разными знаками. Значит, эти числа являются противоположными друг другу, следовательно, их сумма будет равна 0 .

Ответ: 14 + - 14 = 0

В конце статьи добавим, что результат сложения действительных отрицательных чисел с положительными зачастую лучше записывать в виде числового выражения с корнями, степенями или логарифмами, а не в виде бесконечной десятичной дроби. Так, если мы сложим числа n и - 3 , то ответ будет равен n - 3 . Считать окончательный результат нужно далеко не всегда, и можно обойтись приблизительными расчетами. Более подробно об этом мы напишем в статье об основных действиях с действительными числами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.

Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.

В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа .

Навигация по уроку:

Пример 1. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:

Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .

Некоторые примитивные действия, такие как: заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:

Пример 2. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:

Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:

Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.

Пример 3. Найти значение выражения:

В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том, как это сделать. Если испытываете трудности, обязательно повторите урок .

После приведения дробей к общему знаменателю выражение примет следующий вид:

Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Запишем решение данного примера покороче:

Пример 4. Найти значение выражения

Вычислим данное выражение в следующем : слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .

Первое действие:

Второе действие:

Пример 5 . Найти значение выражения:

Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Получили ответ .

Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.

Итак, вернёмся к изначальному выражению:

Заключим каждое число в скобки. Для этого смешанное число временно :

Вычислим целые части:

(−1) + (+2) = 1

В главном выражении вместо (−1) + (+2) запишем полученную единицу:

Полученное выражение . Для этого запишем единицу и дробь вместе:

Запишем решение этим способом покороче:

Пример 6. Найти значение выражения

Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Запишем решение данного примера покороче:

Пример 7. Найти значение выражение

Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:

Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно .

Решим данный пример вторым способом. Вернемся к изначальному выражению:

Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:

Заключим каждое рациональное число в скобки вместе своими знаками:

Вычислим целые части:

В главном выражении вместо запишем полученное число −7

Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:

Запишем это решение покороче:

Пример 8. Найти значение выражения

Заключим каждое рациональное число в скобки вместе своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и

Запишем это решение покороче:

Пример 9. Найти выражения выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.

В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:

Обратите внимание, что дробные части были приведены к общему знаменателю.

Пример 10. Найти значение выражения

Заменим вычитание сложением:

В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:

Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:

Пример 11. Найти значение выражения

Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Пример 12. Найти значение выражения

Выражение состоит из нескольких рациональных чисел. Согласно , в первую очередь необходимо выполнить действия в скобках.

Сначала вычислим выражение , затем выражение Полученные результаты слóжим.

Первое действие:

Второе действие:

Третье действие:

Ответ: значение выражения равно

Пример 13. Найти значение выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:

Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заменим вычитание сложением:

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Таким образом, значение выражения равно

Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.

Пример 14. Найти значение выражения −3,2 + 4,3

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:

(−3,2) + (+4,3)

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:

(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1

Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2

Таким образом, значение выражения −3,2 + (+4,3) равно 1,1

−3,2 + (+4,3) = 1,1

Пример 15. Найти значение выражения 3,5 + (−8,3)

Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:

3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8

Таким образом, значение выражения 3,5 + (−8,3) равно −4,8

Этот пример можно записать покороче:

3,5 + (−8,3) = −4,8

Пример 16. Найти значение выражения −7,2 + (−3,11)

Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.

Запись с модулями можно пропустить, чтобы не загромождать выражение:

−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31

Таким образом, значение выражения −7,2 + (−3,11) равно −10,31

Этот пример можно записать покороче:

−7,2 + (−3,11) = −10,31

Пример 17. Найти значение выражения −0,48 + (−2,7)

Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:

−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18

Пример 18. Найти значение выражения −4,9 − 5,9

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:

(−4,9) − (+5,9)

Заменим вычитание сложением:

(−4,9) + (−5,9)

Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:

(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8

Таким образом, значение выражения −4,9 − 5,9 равно −10,8

−4,9 − 5,9 = −10,8

Пример 19. Найти значение выражения 7 − 9,3

Заключим в скобки каждое число вместе со своими знаками

(+7) − (+9,3)

Заменим вычитание сложением

(+7) + (−9,3)

(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3

Таким образом, значение выражения 7 − 9,3 равно −2,3

Запишем решение этого примера покороче:

7 − 9,3 = −2,3

Пример 20. Найти значение выражения −0,25 − (−1,2)

Заменим вычитание сложением:

−0,25 + (+1,2)

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:

−0,25 + (+1,2) = 1,2 − 0,25 = 0,95

Запишем решение этого примера покороче:

−0,25 − (−1,2) = 0,95

Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)

Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5

Первое действие:

4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0

Второе действие:

−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5

Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.

Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)

Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:

Первое действие:

3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6

Второе действие:

3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4

Третье действие

0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6

Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.

Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15

Заключим в скобки каждое рациональное число вместе со своими знаками

(−3,8) + (+17,15) − (+6,2) − (+6,15)

Заменим вычитание сложением там, где это можно:

(−3,8) + (+17,15) + (−6,2) + (−6,15)

Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.

Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:

Первое действие:

(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35

Второе действие:

13,35 + (−6,2) = 13,35 − −6,20 = 7,15

Третье действие:

7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1

Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.

Пример 24. Найти значение выражения

Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:

    формирование знаний о правиле сложения чисел с разными знаками, умений применять его в простейших случаях;

    развитие умений сравнивать, выявлять закономерности, обобщать;

    воспитание ответственного отношения к учебному труду.

Оборудование: мультимедийный проектор, экран.

Тип урока: урок изучения нового материала.

ХОД УРОКА

1.Организационный момент.

Ровно встали,

Тихо сели.

Прозвенел сейчас звонок,

Начинаем наш урок.

Ребята! Сегодня к нам на урок пришли гости. Давай повернемся к ним и улыбнемся друг другу. Итак, мы начинаем наш урок.

Слайд 2 - Эпиграф урока: «Кто ничего не замечает, тот ничего не изучает.

Кто ничего не изучает, тот вечно хнычет и скучает.»

Роман Сеф (детский писатель)

Слад 3 - Предлагаю поиграть в игру «Наоборот». Правила игры : нужно разделить слова на две группы: выигрыш, ложь,тепло, отдал, правда, добро, проигрыш, взял, зло, холодно, положительное, отрицательное.

Противоречий в жизни много. С их помощью мы определяем окружающую действительность. Для нашего занятия мне необходимо последнее: положительное – отрицательное.

О чем мы говорим в математике, когда употребляем эти слова? (О числах.)

Великий Пифагор утверждал: «Числа правят миром». Я предлагаю поговорить о самых загадочных числах в науке – о числах с разными знаками. - Отрицательные числа появились в науке, как противоположность к положительным. Их путь в науку был труден, потому что даже многие ученые не поддерживали идей об их существовании.

Какие понятия и величины люди измеряют положительными и отрицательными числами? (заряды элементарных частиц, температуру, убытки, высоту и глубину и т.д.)

Слайд 4- Слова противоположные по значению – антонимы (таблица).

2.Постановка темы урока.

Слайд 5(работа с таблицей) – Какие числа изучали на предыдущих уроках?
– Какие задания, связанные с положительными и отрицательными числами вы умеете выполнять?
– Внимание на экран. (Слайд 5)
– Какие числа представлены в таблице?
– Назовите модули чисел, записанных по горизонтали.
– Укажите наибольшее число, укажите число с наибольшим модулем.
– Ответьте на те же вопросы для чисел, записанных по вертикали.
– Всегда ли наибольшее число и число с наибольшим модулем совпадают?
– Найдите сумму положительных чисел, сумму отрицательных чисел.
– Сформулируйте правило сложения положительных чисел и правило сложения отрицательных чисел.
– Какие числа осталось сложить?
– Умеете ли вы их складывать?
– Знаете ли вы правило сложения чисел с разными знаками?
– Сформулируйте тему урока.
– Какую цель вы перед собой поставите? .Подумайте, что мы будем делать сегодня? (Ответы детей). Сегодня мы продолжаем знакомиться с положительными и отрицательными числами. Тема нашего урока “Сложение чисел с разными знаками.” А наша цель: научиться без ошибок, складывать числа с разными знаками. Записали в тетрадь число и тему урока .

3.Работа по теме урока .

Слайд 6. – Применяя данные понятия, найдите результаты сложения чисел с разными знаками на экране.
– Какие числа являются результатом сложения положительных чисел, отрицательных чисел?
– Какие числа являются результатом сложения чисел с разными знаками?
– От чего зависит знак суммы чисел с разными знаками? (Слайд 5)
– От слагаемого с наибольшим модулем.
– Это как при перетягивании каната. Побеждает сильнейший.

Слайд 7 – Поиграем. Представьте, что вы перетягиваете канат.. Учитель. Соперники обычно встречаются на соревнованиях. И мы сегодня побываем с вами на нескольких турнирах. Первое, что нас ждет – это финал конкурса по перетягиванию каната. Встречаются Иван Минусов под номером -7 и Петр Плюсов под номером +5. Как вы думаете, кто победит? Почему? Итак, победил Иван Минусов, он действительно оказался сильнее соперника, и смог перетащить его на свою отрицательную сторону ровно на два шага.

Слайд 8.- . А теперь побываем на других соревнованиях. Перед вами финал состязания по стрельбе. Лучшими в этом виде оказались Минус Тройкин с тремя воздушными шарами и Плюс Четвериков, имеющий в запасе четыре воздушных шарика. А здесь ребята, как вы думаете, кто станет победителем?

Слайд 9 - Соревнования показали, что в них побеждает сильнейший. Так и при сложении чисел с разными знаками: -7 + 5 = -2 и -3 + 4 = +1. Ребята, как же складываются числа с разными знаками?Учащиеся предлагают свои варианты.

Учитель формулирует правило, приводит примеры.

    10 + 12 = +(12 – 10) = +2

    4 + 3,6 = -(4 – 3,6) = -0,4

Учащиеся в процессе демонстрации могут комментировать решение, появляющееся на слайде.

Слайд 10 - Учитель- поиграем ещё в одну игру «Морской бой». К нашему побережью приближается вражеский корабль, его необходимо подбить и потопить. Для этого у нас есть пушка. Но чтобы попасть в цель необходимо произвести точные расчеты. Какие вы сейчас увидите. Готовы? Тогда вперед! Прошу не отвлекаться, примеры меняются ровно через 3 сек. Все готовы?

Учащиеся по очереди выходят к доске и вычисляют примеры, появляющиеся на слайде. – Назовите этапы выполнения задания.

Слайд 11- Работа по учебнику: стр.180 п.33 , прочитать правило сложения чисел с разными знаками. Комментирует правило.
– В чём отличие правила, предложенного в учебнике, от составленного вами алгоритма? Рассмотреть примеры в учебнике с комментарием.

Слайд 12- Учитель-А теперь ребята давайте проведем эксперимент. Но не химический, а математический! Возьмем числа 6 и 8, знаки плюс и минус и все хорошенько перемешаем. Получим четыре примера-опыта. Проделайте их у себя в тетради.(двое учащихся решают на крыльях доски, затем ответы проверяются). Какие выводы можно сделать из этого эксперимента? (Роль знаков). Проведем ещё 2 эксперимента , но с вашими числами (выходят по1 человеку к доске). Придумаем друг другу числа и проверим результаты эксперимента (взаимопроверка).

Слайд 13 .- На экран выводится правило в стихотворной форме .

4.Закрепление темы урока.

Слайд 14 – Учитель- «Знаки всякие нужны, знаки всякие важны!» Сейчас, ребята, мы поделимся с вами на две команды. Мальчики будут в команде Деда Мороза, а девочки – Солнышка. Ваша задача, не вычисляя примеры, определить в каких из них получатся отрицательные ответы, а в каких - положительные и выписать в тетрадь буквы этих примеров. Мальчики соответственно – отрицательные, а девочки – положительные(выдаются карточки с приложения). Проводится самопроверка.

Молодцы! Чутьё на знаки у вас отличное. Это поможет вам выполнить следующее задание

Слайд 15 - Физкульминутка. -10, 0,15,18,-5,14,0,-8,-5 и т. д.(отрицательные числа- приседают, положительные числа- подтягиваются вверх, подпрыгивают)

Слайд 16 -Решить 9 примеров самостоятельно (задание на карточках в приложении). 1человек у доски. Сделать самопроверку. Ответы выводятся на экран, ошибки учащиеся исправляют в тетради. Поднимите руки, у кого верно. (Отметки выставляются только за хороший и отличный результат)

Слайд 17 -Правильно решать примеры нам помогают правила. Давайте их повторим На экране алгоритм сложения чисел с разными знаками.

5.Организация самостоятельной работы.

Слайд 18 -Ф ронтальная работа через игру «Отгадай слово» (задание на карточках в приложении) .

Слайд 19 - Должна получиться оценка за игру - «пятёрочка»

Слайд 20 -А теперь,внимание. Домашнее задание. Домашнее задание не должно вызвать у вас затруднений.

Слайд 21 - Законы сложения в физических явлениях. Придумайте примеры на сложение чисел с разными знаками и задайте их друг другу. Что нового вы узнали? Достигли ли мы поставленной цели?

Слайд 22 - Вот и кончился урок,подведем сейчас итог. Рефлексия. Учитель комментирует и выставляет оценки за урок.

Слайд 23 - Спасибо за внимание!

Желаю вам, чтобы в вашей жизни было больше положительного и меньше отрицательного, Хочу сказать вам, ребята, спасибо за вашу активную работу. Я думаю, что вы легко сможете применить полученные знания на последующих уроках. Урок окончен. Всем большое спасибо. До свидания!

Задача 1. Игрок записывал выигрыш знаком + и проигрыш знаком –. Найти результат каждой из следующих записей: a) +7 руб. +4 руб.; b) –3 руб. –6 руб.; c) –4 р. +4 р.; d) +8 р. –6 р.; e) –11 р. +7 р.; f) +2 р. +3 р. –5 р.; g) +6 р. –4 р. +3 р. –5 р. +2 р. –6 р.

Запись a) указывает, что игрок сначала выиграл 7 руб. и затем еще выиграл 4 р., – итого выиграл 11 р.; запись c) указывает, что сначала игрок проиграл 4 р. и затем выиграл 4 р., – потому общий результат = 0 (игрок ничего не сделал); запись e) указывает, что игрок сначала проиграл 11 руб., потом выиграл 7 руб., – проигрыш пересиливает выигрыш на 4 руб.; следовательно, в общем, игрок проиграл 4 руб. Итак, имеем право для этих записей записать, что

a) +7 р. +4 р. = +11 р.; c) –4 р. +4 р. = 0; e) –11 р. + 7 р. = –4 руб.

Так же легко разбираются и остальные записи.

По своему смыслу эти задачи сходны с теми, которые в арифметике решаются с помощью действия сложения, поэтому и здесь мы станем считать, что везде приходится для нахождения общего результата игры складывать относительные числа, выражающие результаты отдельных игр, например, в примере c) относительное число –11 руб. складывается с относительным числом +7 руб.

Задача 2. Кассир записывал приход кассы знаком +, а расход знаком –. Найти общий результат каждой из следующих записей: a) +16 р. +24 р.; b) –17 р. –48 р.; c) +26 р. –26 р.; d) –24 р. +56 р.; e) –24 р. +6 р.; f) –3 р. +25 р. –20 р. +35 р.; g) +17 р. –11 р. +14 р. –9 р. –18 р. +7 р.; h) –9 р –7 р. +15 р. –11 р. +4 р.

Разберем, напр., запись f): сосчитаем сперва весь приход кассы: по этой записи было 25 руб. приходу, да еще 35 руб. приходи, итого приходу было 60 руб., а расходу было 3 руб., да еще 20 руб., итого было 23 руб. расходу; приход превышает расход на 37 руб. След.,

– 3 руб. + 25 руб. – 20 руб. + 35 руб. = +37 руб.

Задача 3. Точка колеблется по прямой, начиная от точки A (черт. 2).

Черт. 2.

Перемещение ее вправо обозначаем знаком + и перемещение ее влево знаком –. Где будет находиться точка после нескольких колебаний, записанных одною из следующих записей: a) +2 дм. –3 дм. +4 дм.; b) –1 дм. +2 дм. +3 дм. +4 дм. –5 дм. +3 дм.; c) +10 дм. –1 дм. +8 дм. –2 дм. +6 дм. –3 дм. +4 дм. –5 дм.; d) –4 дм. +1 дм. –6 дм. +3 дм. –8 дм. +5 дм.; e) +5 дм. –6 дм. +8 дм. –11 дм. На чертеже дюймы обозначены отрезками, меньшими настоящих.

Последнюю запись (e) разберем: сначала колеблющаяся точка передвинулась вправо от A на 5 дм., потом передвинулась влево на 6 дм., – в общем, она должна оказаться находящеюся влево от A на 1 дм., потом подвинулась вправо на 8 дюйм., след., теперь она находится вправо от A на 7 дм., а затем подвинулась влево на 11 дм., следовательно, она находится влево от A на 4 дм.

Остальные примеры предоставляем разобрать самим учащимся.

Мы приняли, что во всех разобранных записях приходится складывать записанные относительные числа. Поэтому условимся:

Если несколько относительных чисел написаны рядом (с их знаками), то эти числа надо сложить.

Разберем теперь главные случаи, встречающиеся при сложении, причем возьмем относительные числа без названий (т. е. вместо того, чтобы говорить, напр., 5 руб. выигрышу, да еще 3 руб. проигрышу, или точка переместилась на 5 дм. вправо от A, да потом еще на 3 дм. Влево, станем говорить 5 положительных единиц, да еще 3 отрицательных единиц …).

Здесь надо сложить числа, состоящие из 8 полож. единиц, да еще из 5 полож. единиц, получим число, состоящее из 13 полож. единиц.

Итак, + 8 + 5 = 13

Здесь надо сложить число, состоящее из 6 отрицат. единиц с числом, состоящим из 9 отрицат. единиц, получим 15 отрицат. единиц (сравнить: 6 рублей проигрыша и 9 руб. проигрыша – составят 15 руб. проигрыша). Итак,

– 6 – 9 = – 15.

4 рубля выигрыша да затем 4 руб. проигрыша, в общем, дадут нуль (взаимно уничтожается); также, если точка продвинулась от A сначала вправо на 4 дм., а потом влево на 4 дм., то она окажется опять в точке A и, след., окончательное ее расстояние от A равно нулю, и вообще мы должны считать, что 4 полож. единицы, да еще 4 отрицательных единицы, в общем, дадут нуль, или взаимно уничтожатся. Итак,

4 – 4 = 0, также – 6 + 6 = 0 и т. д.

Два относительных числа, имеющие одинаковую абсолютную величину, но различные знаки, взаимно уничтожаются.

6 отрицат. единиц уничтожатся с 6 положит. единицами, да еще останется 3 полож. единицы. Итак,

– 6 + 9 = + 3.

7 полож. единиц уничтожатся с 7 отрицат. единицами, да еще останется 4 отрицат. единицы. Итак,

7 – 11 = – 4.

Рассматривая 1), 2), 4) и 5) случаи, имеем

8 + 5 = + 13; – 6 – 9 = – 15; – 6 + 9 = + 3 и
+ 7 – 11 = – 4.

Отсюда видим, что надо различать два случая сложения алгебраических чисел: случай, когда слагаемые имеют одинаковые знаки (1-й и 2-й) и случай сложения чисел с разными знаками (4-й и 5-й).

Не трудно теперь увидать, что

при сложении чисел с одинаковыми знаками следует сложить их абсолютные величины и написать их общий знак, а при сложении двух чисел с разными знаками надо вычесть арифметически их абсолютные величины (из большей меньшую) и написать знак того числа, у которого абсолютная величина больше.

Пусть требуется найти сумму

6 – 7 – 3 + 5 – 4 – 8 + 7 + 9.

Мы можем сначала сложить все положительные числа + 6 + 5 + 7 + 9 = + 27, потом все отрицат. – 7 – 3 – 4 – 8 = – 22 и затем полученные результаты между собою + 27 – 22 = + 5.

Можем также воспользоваться здесь тем, что числа + 5 – 4 – 8 + 7 взаимно уничтожаются и тогда остается сложить лишь числа + 6 – 7 – 3 + 9 = + 5.

Другой способ обозначения сложения

Можно каждое слагаемое заключать в скобки и между скобками написать знак сложения. Напр.:

(+7) + (+9); (–3) + (–8); (+7) + (–11); (–4) + (+5);
(–3) + (+5) + (–7) + (+9) + (–11) и т. п.

Мы можем, согласно предыдущему, сразу написать сумму, напр. (–4) + (+5) = +1 (случай сложения чисел с разными знаками: надо из большей абсолютной величины вычесть меньшую и написать знак того числа, у которого абсолютная величина больше), но можем также переписать сначала то же самое без скобок, пользуясь нашим условием, что если числа написаны рядом с их знаками, то эти числа надо сложить; след.,

чтобы раскрыть скобки при сложении положительных и отрицательных чисел, надо слагаемые написать рядом с их знаками (знак сложения и скобки опустить).

Напр.: (+ 7) + (+ 9) = + 7 + 9; (– 3) + (– 8) = – 3 – 8; (+ 7) + (– 11) = + 7 – 11; (– 4) + (+ 5) = – 4 + 5; (– 3) + (+ 5) + (– 7) + (+ 9) + (– 11) = – 3 + 5 – 7 + 9 – 11.

После этого можно полученные числа сложить.

В курсе алгебры следует обратить особенное внимание на уменье раскрывать скобки.

Упражнения.

1) (– 7) + (+ 11) + (– 15) + (+ 8) + (– 1);

На этом уроке мы узнаем, что такое отрицательное число и какие числа называются противоположными. Также научимся складывать отрицательные и положительные числа (числа с разными знаками) и разберём несколько примеров сложения чисел с разными знаками.

Посмотрите на эту шестеренку (см. рис. 1).

Рис. 1. Шестеренка часов

Это не стрелка, которая непосредственно показывает время и не циферблат (см. рис. 2). Но без этой детали часы не работают.

Рис. 2. Шестеренка внутри часов

А что обозначает буква Ы? Ничего, кроме звука Ы. Но без нее не будут «работать» многие слова. Например, слово «мЫшь». Так и отрицательные числа: они не показывают никакого количества, но без них механизм вычислений был бы существенно труднее.

Мы знаем, что сложение и вычитание равноправные операции, и их можно выполнять в любом порядке. В записи в прямом порядке мы можем посчитать: , а начать с вычитания нет, так как мы не договорились еще, а что же такое .

Понятно, что увеличить число на , а потом уменьшить на означает в итоге уменьшение на три. Почему бы так и не обозначить этот объект и так и считать: прибавить - значит вычесть . Тогда .

Число может означать, например, яблока. Новое число не обозначает никакого реального количества. Само по себе оно ничего не означает, как буква Ы. Это просто новый инструмент для упрощения вычислений.

Назовем новые числа отрицательными . Теперь мы можем вычитать из меньшего числа большее. Технически всё равно нужно вычесть из большего числа меньшего, но в ответе поставить знак минус: .

Рассмотрим ещё один пример: . Можно сделать все действия подряд: .

Однако из первого числа легче вычесть третье, а потом прибавить второе число:

Отрицательные числа можно определить и по-другому.

Для каждого натурального числа, например , введем новое число, которое обозначим , и определим, что оно обладает следующим свойством: сумма числа и равна : .

Число будем называть отрицательным, а числа и - противоположными. Таким образом, мы получили бесконечное количество новых чисел, например:

Противоположное для числа ;

Противоположное числу ;

Противоположное числу ;

Противоположное числу ;

Вычтем из меньшего числа большее: . Прибавим к данному выражению : . Получили ноль. Однако согласно свойству: число, которое в сумме с пятью дает ноль, обозначается минус пять : . Следовательно, выражение можно обозначить как .

У каждого положительного числа существует число-близнец, которое отличается только тем, что перед ним стоит знак минус Такие числа называются противоположными (см. рис. 3).

Рис. 3. Примеры противоположных чисел

Свойства противоположных чисел

1. Сумма противоположных чисел равна нулю: .

2. Если из нуля вычесть положительное число, то результатом будет противоположное отрицательное число: .

1. Оба числа могут быть положительными, и складывать их мы уже умеем: .

2. Оба числа могут быть отрицательными.

Мы уже прошли сложение таких чисел на предыдущем уроке, но убедимся, что понимаем, что с ними делать. Например: .

Чтобы эту сумму найти, складываем противоположные положительные числа и и ставим знак минус.

3. Одно число может быть положительным, а другое - отрицательным.

Прибавление отрицательного числа мы, если это нам удобно, можем заменять на вычитание положительного: .

Ещё один пример: . Опять сумму записываем как разность. Вычесть из меньшего большее число можно, вычитая из большего меньшее, но поставив знак минус.

Слагаемые можем менять местами: .

Ещё один аналогичный пример: .

Во всех случаях в итоге получается вычитание.

Чтобы коротко сформулировать эти правила, давайте вспомним еще один термин. Противоположные числа, конечно, не равны друг другу. Но было бы странно не заметить у них общего. Это общее мы назвали модулем числа . Модуль у противоположных чисел одинаковый: у положительного числа он равен самому числу, а у отрицательного - противоположному, положительному. Например: , .

Чтобы сложить два отрицательных числа, нужно сложить их модули и поставить знак минус:

Чтобы сложить отрицательное и положительное число, нужно из большего модуля вычесть меньший модуль и поставить знак числа с большим модулем:

Оба числа отрицательные, следовательно, складываем их модули и ставим знак минус:

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем):

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем): .

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак плюс (знак числа с большим модулем): .

У положительных и отрицательных чисел исторически разная роль.

Сначала мы ввели натуральные числа для счета предметов:

Потом мы ввели другие положительные числа - дроби, для счета нецелых количеств, частей: .

Отрицательные же числа появились как инструмент для упрощения расчетов. Не было такого, чтобы в жизни были какие-то количества, которые нам было не посчитать, и мы изобрели отрицательные числа.

То есть отрицательные числа не возникли из реального мира. Просто они оказались настолько удобными, что кое-где им нашлось применение и в жизни. Например, мы часто слышим про отрицательную температуру. При этом мы никогда не сталкиваемся с отрицательным количеством яблок. В чем же разница?

Разница в том, что в жизни отрицательные величины используют только для сравнения, но не для количеств. Если в гостинице оборудовали подвал и туда пустили лифт, то, чтобы оставить привычную нумерацию обычных этажей, может появиться минус первый этаж. Этот минус первый означает всего лишь на этаж ниже уровня земли (см. рис. 1).

Рис. 4. Минус первый и минус второй этажи

Отрицательная температура отрицательна только по сравнению с нулем, который выбрал автор шкалы Андерс Цельсий. Есть другие шкалы, и та же самая температура уже может не быть там отрицательной.

При этом мы понимаем, что невозможно поменять точку отсчета так, чтобы яблок стало не пять, а шесть. Таким образом, в жизни положительные числа используются для определения количеств ( яблок, торта).

Еще мы их используем вместо имен. Каждому телефону можно было бы дать свое имя, но количество имен ограничено, а чисел нет. Поэтому мы используем номера для телефонов. Также для упорядочивания ( век идет за веком).

Отрицательные числа в жизни используются в последнем смысле (минус первый этаж ниже нулевого и первого этажей)

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. «Гимназия», 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.
  1. Math-prosto.ru ().
  2. Youtube ().
  3. School-assistant.ru ().
  4. Allforchildren.ru ().

Домашнее задание