Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде как будто нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что часть энергии куда-то исчезала. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер нет таких частиц. Об их возникновении было высказано предположение, что электроны и нейтрино не существуют в ядре в «готовом виде», а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляется три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного, и в системах, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10-16 см от источника, и потому оно не может влиять на макроскопические объекты, а ограничивается микромиром, субатомными частицами. Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии.

Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать положительно заряженные протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация слишком слаба и не может это обеспечить; очевидно, необходимо какое-то взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Как и в случае слабого взаимодействия, радиус действия новой силы оказался очень малым: сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10-13 см. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 60-х гг., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - малого радиуса (сильное и слабое). Мир физических процессов развертывается в границах этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

В 1896 г. французский ученый Анри Беккерель обнаружил радиоактивность урана. Это был первый экспериментальный сигнал о неизвестных до того силах природы - слабом взаимодействии. Теперь мы знаем, что слабое взаимодействие кроется за многими привычными явлениями, - например, оно принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Название «слабое» досталось этому взаимодействию по недоразумению, - так, для протона оно в 1033 раз сильнее гравитационного взаимодействия (см. Тяготение, Единство сия природы). Это, скорее, разрушительное взаимодействие, единственная сила природы, которая не скрепляет вещество, а только разрушает его. Можно было назвать его и «беспринципным», так как в разрушении оно не считается с принципами пространственной четности и временной обратимости, которые соблюдают остальные силы.

Основные свойства слабого взаимодействия стали известны еще в 1930-х гг., главным образом благодаря работам итальянского физика Э. Ферми. Оказалось, что, в отличие от гравитационных и электрических, слабые силы имеют очень малый радиус действия. В те годы казалось, что радиуса действия вообще нет - взаимодействие происходит в одной точке пространства, и к тому же мгновенно. Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон - в позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино. В стабильных ядрах (см. Ядро атомное) эти превращения так и остаются виртуальными, подобно виртуальным рождениям электрон-позитронных пар или протон-антипротонных пар в вакууме.

Если разница масс ядер, отличающихся на единицу по заряду, достаточно велика, эти виртуальные превращения делаются реальными, и ядро изменяет свой заряд на 1, выбрасывая электрон и антинейтрино (электронный -распад) или позитрон и нейтрино (позитронный -распад). Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрогна. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин, хотя в связанном состоянии, например, в дейтоне, который состоит из нейтрона и протона, эти частицы живут неограниченно долго.

Аналогичное событие происходит с мюоном (см. Пептоны) - он распадается на электрон, нейтрино и антинейтрино. Перед тем как распасться, мюон живет около с - гораздо меньше, чем нейтрон. Теория Ферми объясняла это разницей масс участвующих частиц. Чем больше энергии выделяется при распаде, тем быстрее он идет. Выделение энергии при -распаде около 100 МэВ, примерно в 100 раз больше, чем при распаде нейтрона. Время жизни частицы обратно пропорционально пятой степени этой энергии.

Как выяснилось в последние десятилетия, слабое взаимодействие нелокально, т. е. оно происходит не мгновенно и не в одной точке. По современной теории, слабое взаимодействие передается не мгновенно, а виртуальная пара электрон - антинейтрино рождается через с после того, как мюон переходит в нейтрино, и происходит это на расстоянии см. Ни одна линейка, ни один микроскоп не могут, конечно, измерить такое малое расстояние, так же как ни один секундомер не может измерить такой малый интервал времени. Как это почти всегда бывает, в современной физике мы должны довольствоваться косвенными данными. Физики строят различные гипотезы о механизме процесса и проверяют всевозможные следствия этих гипотез. Те гипотезы, которые противоречат хотя бы одному достоверному опыту, отметаются, а для проверки оставшихся ставятся новые опыты. Этот процесс в случае слабого взаимодействия продолжался около 40 лет, пока физики не пришли к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г. в ЦЕРНе, Швейцария - Франция).

Есть два заряженных векторных бозона и один нейтральный (значок вверху, как обычно, указывает заряд в единицах протонного). В распадах нейтрона и мюона «работает» заряженный векторный бозон . Ход распада мюона изображен на рис. (вверху, справа). Такие рисунки называют диаграммами Фейнмана, они не только иллюстрируют процесс, но и помогают его рассчитать. Это своего рода стенографическая запись формулы для вероятности реакции; здесь она используется только для иллюстрации.

Мюон переходит в нейтрино, испуская -бозон, который распадается на электрон и антинейтрино. Выделяемой энергии недостаточно для реального рождения -бозона, поэтому он рождается виртуально, т. е. на очень короткое время. В данном случае это с. За это время поле, соответствующее -бозону, не успевает сформировать волну, или иначе, реальную частицу (см. Поля и частицы). Образуется сгусток поля размером см, и через с из него рождаются электрон и антинейтрино.

Для распада нейтрона можно было бы нарисовать такую же диаграмму, но тут она уже ввела бы нас в заблуждение. Дело в том, что размер нейтрона см, что в 1000 раз больше радиуса действия слабых сил. Поэтому эти силы действуют внутри нейтрона, где находятся кварки. Один из трех кварков нейтрона испускает -бозон, переходя при этом в другой кварк. Заряды кварков в нейтроне: -1/3, - 1/ 3 и так что один из двух кварков с отрицательным зарядом -1/3 переходит в кварк с положительным зарядом . В результате получатся кварки с зарядами - 1/3, 2/3, 2/3, составляющие вместе протон. Продукты реакции - электрон и антинейтрино - беспрепятственно вылетают из протона. Но ведь кварк, испустивший -бозон. получил отдачу и начал двигаться в противоположном направлении. Почему же он не вылетает?

Его удерживает сильное взаимодействие. Это взаимодействие увлечет за кварком его двух неразлучных спутников, в результате чего получится движущийся протон. По аналогичной схеме происходят слабые распады (связанные со слабым взаимодействием) остальных адронов. Все они сводятся к испусканию векторного бозона одним из кварков, переходу этого векторного бозона в лептоны (, и -частицы) и дальнейшему разлету продуктов реакции.

Иногда, впрочем, происходят и адронные распады: векторный бозон может распасться на пару кварк - антикварк, которая перейдет в мезоны.

Итак, большое количество различных реакций сводится к взаимодействию кварков и лептонов с векторными бозонами. Это взаимодействие универсально, т. е. одинаково для кварков и лептонов. Универсальность слабого взаимодействия в отличие от универсальности гравитационного или электромагнитного взаимодействия не получила пока исчерпывающего объяснения. В современных теориях слабое взаимодействие объединяется с электромагнитным взаимодействием (см. Единство сил природы).

О нарушении симметрии слабым взаимодействием см. Четность, Нейтрино. В статье Единство сил природы рассказано о месте слабых сил в картине микромира

Слабое взаимодействие.

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц. Поэтому с его проявлением столкнулись при открытии радиоактивности и исследовании бета-распада (см. 8.1.5).

У бета-распада обнаружилась в высшей степени странная особенность. Создавалось впечатление, что в этом распаде как будто нарушается закон сохранения энергии, что часть энергии куда-то исчезает. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она - нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами, но было известно, что внутри ядер нет таких частиц. Как же они возникали? Выяснилось, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино. Какие же силы вызывают такой распад? Анализ показал, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой, которой соответствует некоторое «слабое взаимодействие».

Слабое взаимодействие по величине значительно меньше всех взаимодействий, кроме гравитационного. Там, где оно присутствует, его эффекты оказываются в тени электромагнитного и сильного взаимодействий. Кроме того, слабое взаимодействие распространяется на очень незначительные расстояния. Радиус слабого взаимодействия очень мал (10-16 см). Потому оно не может влиять не только на макроскопические, но даже на атомные объекты и ограничивается субатомными частицами. Кроме того, по сравнению с электромагнитным и сильным взаимодействиями слабое взаимодействие протекает чрезвычайно медленно.

Когда началось лавинообразное открытие множества нестабильных субъядерных частиц, то обнаружилось, что большинство из них участвуют в слабом взаимодействии. Слабое взаимодействие играет в природе очень важную роль. Оно является составной частью термоядерных реакций на Солнце, звездах, обеспечивая синтез пульсаров, взрывов сверхновых звезд, синтез химических элементов в звездах и др.

Слабое взаимодействие

Сильное взаимодействие

Сильное взаимодействие – короткодействующее. Его радиус действия порядка 10-13 см.

Частицы, участвующие в сильном взаимодействии, называются адронами. В обычном стабильном веществе при не чересчур высокой температуре сильное взаимодействие не вызывает никаких процессов. Его роль сводится к созданию прочной связи между нуклонами (протонами и нейтронами) в ядрах. Энергия связи в среднем составляет около 8 Мэв на нуклон. При этом при столкновениях ядер или нуклонов, обладающих достаточно высокой энергией (порядка сотни Мэв), сильное взаимодействие приводит к многочисленным ядерным реакциям: расщеплению ядер, превращению одних ядер в другие и т.п.

Начиная с энергий сталкивающихся нуклонов порядка нескольких сотен Мэв, сильное взаимодействие приводит к рождению П-мезонов. При еще больших энергиях рождаются К-мезоны и гипероны, и множество мезонных и барионных резонансов (резонансы - это короткоживущие возбужденные состояния адронов).

Вместе с тем выяснилось, что сильное взаимодействие испытывают не всœе частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился только в начале 1960-х гᴦ., когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков

Квантами сильного взаимодействия являются восœемь глюонов. Свое название глюоны получи­ли от английского слова glue (клей), ибо именно они ответ­ственны за конфайнмент кварков. Массы покоя глюонов равны нулю. При этом глюоны обладают цветным зарядом, благодаря чему они способны к взаимодействию друг с дру­гом, как говорят, к самодействию, что приводит к трудно­стям описания сильного взаимодействия математически вви­ду его нелинœейности.

Его радиус действия меньше 10-15 см. Слабое взаимодействие на несколько порядков слабее не только сильного, но и электромагнитного. При этом оно гораздо сильнее гравитационного в микромире.

Первым обнаруженным и наиболее распространенным процессом, вызываемым слабым взаимодействием, является радиоактивный b-распад ядер.
Размещено на реф.рф
Этот тип радиоактивности был открыт в 1896 году А.А. Беккерелœем. В процессе радиоактивного электронного /b - -/ распада один из нейтронов /n / атомного ядра превращается в протон /р / с испусканием электрона /е- / и электронного антинœейтрино //:

n ® p + е-+

В процессе позитронного /b + -/ распада происходит переход:

p® n + е++

В первой теории b-распада, созданной в 1934 году Э. Ферми, для объяснения этого явления потребовалось ввести гипотезу о существовании особого типа короткодействующих сил, которые вызывают переход

n ® p + е-+

Дальнейшее исследование показало, что введенное Ферми взаимодействие имеет универсальный характер.
Размещено на реф.рф
Оно обуславливает распад всœех нестабильных частиц, массы которых и правила отбора по квантовым числам не позволяют им распадаться за счёт сильного или электромагнитного взаимодействия. Слабое взаимодействие присуще всœем частицам, кроме фотонов. Характерное время протекания процессов слабого взаимодействия при энергиях порядка 100 Мэв на 13-14 порядков больше характерного времени для сильного взаимодействия.

Квантами слабого взаимодействия являются три бо­зона - W + , W − , Z°- бозоны. Верхние индексы указывают знак электрического заряда этих квантов. Кванты слабого взаимодействия имеют значительную массу, что приводит к тому, что слабое взаимодействие проявляется на очень ко­ротких расстояниях.

Необходимо учитывать, что сегодня уже в единую теорию объединœены слабое и электромагнитное взаимодействия. Существует ряд теоретических схем, в которых делается попытка создать единую теорию всœех типов взаимодействия. При этом эти схемы еще не настолько разработаны, чтобы можно было их проверять на опыте.

26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм

Объектами структурной физики являются элементы структуры вещества (к примеру, молекулы, атомы, элементарные частицы ) и более сложное образование из них. Это:

1) плазма - это газ, в котором значительная часть молекул или атомов ионизирована;

2) кристаллы - это твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру;

3) жидкости - это агрегатное состояние вещества, ĸᴏᴛᴏᴩᴏᴇ сочетает в себе черты твердого состояния (сохранение объёма, определœенная прочность на разрыв) и газообразного (изменчивость формы).

Для жидкости характерны:

а) ближний порядок в расположении частиц (молекул, атомов);

б) малое различие в кинœетической энергии теплового движения и их потенциальной энергии взаимодействия.

4) звезды, ᴛ.ᴇ. светящиеся газовые (плазменные) шары.

При выделœении структурных уравнений вещества пользуются такими критериями:

Пространственные размеры: частицы одного уровня имеют пространственные размеры одного порядка (к примеру, всœе атомы имеют размеры порядка 10 -8 см);

Время протекания процессов: на одном уровне оно примерно одного порядка;

Объекты одного уровня состоят из одних и тех же элементов (к примеру, всœе ядра состоят из протонов и нейтронов);

Законы, объясняющие процессы на одном уровне, качественно отличаются от законов, объясняющих процессы на другом уровне;

Объекты разных уровней различаются по основным свойствам (к примеру, всœе атомы электрически нейтральны, а всœе ядра положительно электрически заряжены).

По мере открытия новых уровней структуры и состояний вещества объектная область структурной физики расширяется.

Необходимо учитывать, что при решении конкретных физических задач вопросы, связанные с выяснением структуры, взаимодействия и движения, тесно переплетаются.

В корне структурной физики лежит корпускулярный подход к описанию и объяснению природы.

Впервые понятие об атоме как последней и неделимой частице тела возникло в Античной Греции в рамках натурфилософского учения школы Левкиппа-Демокрита. Согласно этому взгляду в мире существуют только атомы, которые движутся в пустоте. Непрерывность материи древние атомисты считали кажущейся. Различные комбинации атомов образуют разнообразные видимые тела. Эта гипотеза не основывалась на данных экспериментов. Она была лишь гениальной догадкой. Но она определила на многие столетия вперед всœе дальнейшее развитие естествознания.

Гипотеза об атомах как неделимых частицах вещества была возрождена в естествознании, в частности, в физике и химии для объяснения некоторых закономерностей, которые устанавливались опытным путем (к примеру, законов Бойля-Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и т.д.). Действительно, закон Бойля-Мариотта утверждает, что объём газа обратно пропорционален его давлению, но он не объясняет, почему это так. Аналогично, при нагревании тела его размеры увеличиваются. Но какова же причина такого расширения? В кинœетической теории вещества с помощью атомов и молекул объясняются эти и другие установленные опытом закономерности.

Действительно, непосредственно наблюдаемое и измеряемое уменьшение давления газа при увеличении его объёма в кинœетической теории вещества объясняется как увеличение свободного пробега составляющих его атомов и молекул. Именно вследствии этого и возрастает объём, занимаемый газом. Аналогично этому, расширение тел при нагревании в кинœетической теории вещества объясняют возрастанием средней скорости движущихся молекул.

Объяснения, при которых свойства сложных веществ или тел пытаются свести к свойствам более простых их элементов или составных частей, называют редукционизмом. Такой способ анализа позволил решить в естествознании большой класс задач.

Вплоть до конца XIX в. считалось, что атом - это мельчайшая, неделимая, бесструктурная частица вещества. При этом, открытия электрона, радиоактивности показали, что это не так. Возникает планетарная модель атома Резерфорда. Потом ее сменяет модель Н. Бора. Но по-прежнему мысль физиков устремлена на то, чтобы свести всœе многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных частиц. Впоследствии эти частицы были названы элементарными . Сейчас их общее число превышает 350. По этой причине вряд ли всœе такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков. Согласно ей, известные элементарные частицы состоят из частиц с дробными электрическими зарядами. Их называют кварками.

По типу взаимодействия, в котором участвуют элементарные частицы, всœе они, кроме фотона, бывают отнесены к двум группам:

1) адроны. Стоит сказать, что для них характерно наличие сильного взаимодействия. При этом они могут участвовать также в слабом и электромагнитном взаимодействиях;

2) лептоны. Οʜᴎ участвуют только в электромагнитном и слабом взаимодействиях;

По времени жизни различают:

а) стабильные элементарные частицы. Это электрон, фотон, протон и нейтрино;

б) квазистабильные. Это частицы, которые распадаются вследствие электромагнитного и слабого взаимодействия. К примеру, к + ® m + +;

в) нестабильные. Οʜᴎ распадаются за счёт сильного взаимодействия, к примеру, нейтрон.

Электрические заряды элементарных частиц являются кратными наименьшего заряда, присущего электрону. Вместе с тем, элементарные частицы делят на пары частица – античастица, к примеру е - - е + (у них всœе характеристики одинаковы, а знаки электрического заряда противоположны). Электрически нейтральные частицы тоже имеют античастицы, к примеру, п -, - .

Итак, атомистическая концепция опирается на представление о дискретном строении материи. Атомистический подход объясняет свойства физического объекта͵ исходя из свойств составляющих его мельчайших частиц, которые на определœенном этапе познания считаются неделимыми. Исторически, такими частицами сначала признавались атомы, затем элементарные частицы, а сейчас - кварки. Трудность такого подхода - это полная редукция сложного к простому, при которой не учитываются качественные различия между ними.

Вплоть до конца первой четверти ХХ века идея единства строения макро- и микрокосмоса понималась механистически, как полное тождество законов и как полное сходство строения того и другого.

Микрочастицы трактовались как миниатюрные копии макротел, ᴛ.ᴇ. как чрезвычайно малые шарики (корпускулы), двигающиеся по точным орбитам, которые совершенно аналогичны планетным орбитам, с той лишь разницей, что небесные тела связываются силами гравитационного взаимодействия, а микрочастицы - силами электрического взаимодействия.

После открытия электрона (Томсон, 1897 ᴦ.), создания теории квантов (Планк, 1900 ᴦ.), введения понятия фотон (Эйнштейн, 1905 ᴦ.), атомное учение приобрело новый характер.
Размещено на реф.рф
Идея дискретности была распространена на область электрических и световых явлений, на понятие энергии (в XIX веке учение об энергии служило сферой представления о непрерывных величинах и функциях состояния). Важнейшую черту современного атомного учения составляет атомизм действия. Он связан с тем, что движение, свойства и состояния различных микробъектов поддаются квантованию, ᴛ.ᴇ. бывают выражены в форме дискретных величин и отношений. Новая атомистика признает относительную устойчивость каждого дискретного вида материи, его качественную определœенность, его относительную неделимость и непревращаемость в известных границах явлений природы. К примеру, будучи делимым некоторыми физическими способами, атом неделим химически, ᴛ.ᴇ. в химических процессах он ведет себя как нечто целое, неделимое. Молекула, будучи делима химически на атомы, в тепловом движении (до известных пределов) ведет себя как целое, неделимое и т.д.

Особенно важно в концепции новой атомистики признание взаимопревращаемости любых дискретных видов материи.

Разные уровни структурной организации физической реальности (кварки, микрочастицы, ядра, атомы, молекулы, макротела, мегасистемы) имеют свои специфические физические законы. Но как бы ни отличались изучаемые явления от явлений, изучаемых классической физикой, всœе опытные данные должны описываться с помощью классических понятий. Существует принципиальное различие между описанием поведения изучаемого микрообъекта и описанием действия измерительных приборов. Это результат того, что действие измерительных приборов в принципе должно описываться языком классической физики, а изучаемый объект может и не описываться этим языком.

Корпускулярный подход в объяснении физических явлений и процессов всœегда сочетался с континуальным подходом с момента возникновения физики взаимодействия. Он выражался в понятии поля и раскрытии его роли в физическом взаимодействии. Представление поля как потока определœенного рода частиц (квантовая теория поля) и приписывание любому физическому объекту волновых свойств (гипотеза Луи де Бройля) соединила вместе эти два подхода к анализу физических явлений.

Слабое взаимодействие - понятие и виды. Классификация и особенности категории "Слабое взаимодействие" 2017, 2018.

Читателю знакомы разные по своей природе силы, проявляющиеся во взаимодействиях между телами. Но глубоко различающихся в принципе типов взаимодействия очень мало. Если не считать тяготения, которое играет существенную роль только в присутствии огромных масс, то известны лишь три вида взаимодействий: сильные , электромагнитные и слабые .

Электромагнитные взаимодействия всем знакомы. Благодаря им движущийся неравномерно электрический заряд (скажем, электрон в атоме) испускает электромагнитные волны (например, видимый свет). С этим классом взаимодействий связаны все химические процессы, а также все молекулярные явления - поверхностное натяжение, капиллярность, адсорбция, текучесть. Электромагнитные взаимодействия , теория которых блестяще подтверждается опытом, глубоко связаны с электрическим зарядом элементарных частиц .

Сильные взаимодействия стали известны только после раскрытия внутренней структуры атомного ядра. В 1932 г. было обнаружено, что оно состоит из нуклонов, нейтронов и протонов. И именно сильные взаимодействия соединяют нуклоны в ядре - отвечают за ядерные силы, которые в отличие от электромагнитных характеризуются очень малым радиусом действия (около 10-13, т.е. одной десятитриллионной доли сантиметра) и большой интенсивностью. Кроме этого, сильные взаимодействия появляются при столкновениях частиц высоких энергии с участием пионов и так называемых "странных" частиц .

Интенсивность взаимодействий удобно оценивать по так называемой длине свободного пробега частиц в некотором веществе, т.е. по средней величине пути, который частица может пройти в этом веществе до разрушающего или сильно отклоняющего соударения. Ясно, что чем больше длина свободного пробега, тем менее интенсивно взаимодействие.

Если рассматривать частицы очень высокой энергии, то соударения, обусловленные сильными взаимодействиями , характеризуются длиной свободного пробега частиц , соответствующей по порядку величины десяткам сантиметров в меди или железе.

Иначе обстоит дело при слабых взаимодействиях . Как мы уже сказали, длина свободного пробега нейтрино в плотном веществе измеряется в астрономических единицах. Это указывает на удивительно малую интенсивность слабых взаимодействий.

Любой процесс взаимодействия элементарных частиц характеризуется некоторым временем, определяющим его среднюю продолжительность. Процессы, вызванные слабыми взаимодействиями , часто называют "медленными", так как время для них относительно велико.

Читатель, правда, может удивиться тому, что явление, происходящее, скажем, за 10-6 (одну миллионную долю) секунды, классифицируется как медленное. Такое время жизни характерно, например, для распада мюона, вызванного слабыми взаимодействиями . Но все познается в сравнении. В мире элементарных частиц такой промежуток времени действительно весьма продолжителен. Естественной единицей длины в микромире служит 10-13 сантиметра - радиус действия ядерных сил. А так как элементарные частицы высокой энергии имеют скорость, близкую к скорости света (порядка 1010 сантиметров в секунду), то "нормальный" масштаб времени для них составит 10-23 секунды.

Это значит, что время 10-6 секунды для "граждан" микромира гораздо более продолжительно, чем для нас с вами весь период существования жизни на Земле