Мы выбрали данную тему, потому что с понятиями «температура», «измерение температуры», «термометр» мы постоянно сталкиваемся как при рассмотрении физических или химических процессов в науке и производстве, так и в быту, когда ставим больному градусник или смотрим на спиртовой термометр за окном чтобы узнать, надевать ли теплое пальто. Однако обычно при этом под температурой мы понимаем просто степень нагретости тела и не задумываемся о том, что же такое температура с физической точки зрения. Температура является одной из наиболее часто измеряемых физических величин, поскольку практически нет ни одной области деятельности, где не требовалось измерять и регулировать температуру, так же это один из важнейших экологических факторов, от которого зависит выживание на планете, ее формы и виды. Жизнь человека, также, напрямую зависит от температуры окружающей среды.

В Международной системе единиц (СИ) термодинамическая температура используется в качестве одной из семи основных физических величин, входящих в Международную систему величин, а её единицей является кельвин, представляющий собой, соответственно, одну из семи основных единиц СИ.

Цель работы: Ознакомиться с понятием температуры.

Задачи: Просмотреть температурные шкалы, получить представление о некоторых видах термометров, их принципах действия, проработать задачи, провести опыт.

1.Температура, T .

Температу́ра (от латин. temperatura — надлежащее смешение, нормальное состояние) — скалярная* физическая величина, характеризующая состояние термодинамического равновесия** макроскопической системы***. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура относится к интенсивным величинам, не зависящим от массы системы.

Интуитивно понятие температура появилось как мера градации наших ощущений тепла и холода; на бытовом уровне температура воспринимается как параметр, служащий для количественного описания степени нагретости материального объекта.

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Средняя кинетическая энергия хаотического поступательного движения молекул тела пропорционально термодинамической (абсолютной) температуре:

(k=1.38*10^-23Дж/k-постоянная Больцмана(является коэффициентом, переводящем температуру из градусной меры(K) в энергетическую(Дж), множитель 3/2 был введен для удобства, благодаря чему исчезают множители в других формулах.)

Средняя скорость теплового движения.

Как следует из формулы

холодный газ отличается от нагретого до большой температуры энергией хаотического движения молекул, поэтому хаотическое движение молекул называется тепловым.

Среднюю (точнее, средне-квадратичную) скорость теплового движения молекул можно выразить через температуру газа с помощью формулы

Последнюю формулу можно привести к более удобному виду, если выразить массу молекулы и обозначить (R ~ 8, 31 Дж/(К. моль) называют универсальной газовой постоянной)

* Скалярная величина — величина, каждое значение которой может быть выражено одним действительным числом. Т. е. скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.

**Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объем,) в условиях изолированности от окружающей среды.

*** Макроскопическая система — система состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц.

****Изолированная система (замкнутая система) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией.

2.Температурные шкалы.

Температурные шкалы , способы деления на части интервалов температуры, измеряемых термометрами по изменению какого-либо удобного для измерений физического свойства объекта, при прочих равных условиях однозначно зависящего от температуры (объёма, давления, электрического сопротивления, интенсивности излучения, показателя преломления, скорости звука и др.) и называемого термометрическим свойством . Для построения шкалы температур приписывают её численные значения двум фиксированным точкам (реперным точкам температуры), например точке плавления льда и точке кипения воды. Деля разность температур реперных точек (основной температурный интервал ) на выбранное произвольным образом число частей, получают единицу измерения температуры, а задавая, опять-таки произвольно, функциональную связь между выбранным термометрическим свойством и температурой, получают возможность вычислять температуру по данной температурной шкале.

Ясно, что построенная таким способом эмпирическая температурная шкала является произвольной и условной. Поэтому можно создать любое число температурных шкал, различающихся выбранными термометрическими свойствами, принятыми функциональными зависимостями температуры от них (в простейшем случае связь между термометрическим свойством и температурой полагают линейной) и температурами реперных точек.

Примерами температурных шкал служат шкалы Цельсия, Реомюра, Фаренгейта, Ранкина и Кельвина.

Пересчёт температуры от одной температурной шкалы к другой, отличающейся термометрическим свойством, невозможен без дополнительных экспериментальных данных.

Принципиальный недостаток эмпирических температурной шкал — их зависимость от выбранного термометрического свойства — отсутствует у абсолютной (термодинамической) температурная шкалы.

2.1. Шкала Кельвина.

Ке́львин (обозначение: K) — единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. Один кельвин равен 1/273,16 части термодинамической температуры тройной точки воды*. Начало шкалы (0 К) совпадает с абсолютным нулём**.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды — 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

До 1968 года кельвин официально именовался градусом Кельвина.

* Тройна́я то́чка воды́ — строго определенные значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом, жидком и газообразном состояниях. Тройная точка воды — температура 273,16 К и давление 611,657 Па.

** Абсолю́тный нуль температу́ры (реже — абсолютный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точки — тройной точки воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.


2.2 . Шкала Реомюра.

Гра́дус Реомю́ра (°R) — единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

По ожиданиям Реомюра спирт расширяется приблизительно на 8% (на 8,4% по расчёту: коэффициент расширения спирта 0,00108 К-) при нагреве от температуры таяния льда до температуры кипения (≈78 градусов Цельсия). Поэтому эту температуру Реомюр установил как 80 градусов на своей шкале, на которой одному градусу соответствовало расширение спирта на 1 тысячную, а ноль шкалы был выбран как температура замерзания воды. Однако, из-за того, что в качестве жидкости в те времена использовались не только спирт, но и различные его водные растворы, то многими изготовителями и пользователями термометров ошибочно считалось, что 80 градусов Реомюра это температура кипения воды. И после повсеместного внедрения ртути в качестве жидкости для термометров, а также появления и распространения шкалы Цельсия, к концу 18 века шкала Реомюра была переопределена таким образом окончательно. Из равенства 100 градусов Цельсия = 80 градусов Реомюра получается 1 °C = 0,8 °R (соответственно 1 °R = 1,25 °C). Хотя на самом деле на оригинальной шкале Реомюра должно быть 1 °R = 0,925 °C. Ещё при жизни Реомюра были проведены измерения точки кипения воды в градусах его шкалы (но не со спиртовым термометром — это было невозможно). Жан Тийе в присутствии Жана-Антуана Нолле получил значение 85. Но все последующие измерения дали величины от 100 до 110 градусов. Если использовать вышеупомянутые современные данные, то для точки кипения воды в градусах Реомюра получается значение 108. (В 1772 г. во Франции в качестве стандартной была принята температура кипения воды, равная 110 градусов Реомюра).


2.3. Шкала Цельсия.

Гра́дус Це́льсия (обозначение: °C ) — широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

История:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701—1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° — температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° — кипения воды). В таком виде шкала и используется до нашего времени.



2.4. Шкала Фаренгейта.

Гра́дус Фаренге́йта (обозначение: °F ) — единица измерения температуры. Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F , а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Преобразование из шкалы Фаренгейта в шкалу Цельсия:

Градусы Фаренгейта широко использовались во всех англоязычных странах до 1960-х годов, когда большинство из них перешло на метрическую систему с градусами Цельсия, однако иногда в этих странах фаренгейты используются до сих пор.

В настоящее время градус Фаренгейта используется в быту как основная единица измерения температуры в следующих странах: США и зависимые территории (Гуам, Виргинские острова, Палау, Пуэрто-Рико и т.д.), Белиз, Бермудские Острова, Ямайка.


2.5.Шкала Ранкина.

Шкала Ранкина (измеряется в градусах Ранкина — °Ra) — абсолютная температурная шкала, названа по имени шотландского физика Уильяма Ранкина (1820—1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180. Этим она отличается от абсолютной шкалы Кельвина, где 1 кельвин соответствует 1°С.

Диаграмма перевода температур :

3.Термометры.

Термометр (от греч. terme - тепло, metreo - измеряю) - прибор для измерения температуры: воздуха, воды, почвы, тела человека и других физических тел. Термометры применяются в метеорологии, гидрологии, медицине и других науках и отраслях хозяйства.

История изобретения:

Считают, что изобретателем первого термометра-термоскопа был знаменитый итальянский учёный Галилео Галилей (1597 г.). Термоскоп Галилея представлял собой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали, и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось, и вода под действием атмосферного давления поднималась по трубке вверх на некоторую высоту. В дальнейшем при потеплении, давление воздуха в шарике увеличивалось, и уровень воды в трубке понижался, а при охлаждении - повышался.

При помощи термоскопа можно было судить только об изменении степени нагретости тел: числовых значений температуры он не показывал, поскольку не имел шкалы. Современную форму (запаяв трубку и перевернув её шариком вниз) термометру придал Габриель Даниель Фаренгейт, голландский физик, выдувальщик стекла. А постоянные (реперные) точки - кипящей воды и тающего льда - на шкале термометра разместил шведский астроном и физик Андерс Цельсий в 1742 году.

В настоящее время существуют много видов термометров: цифровые, электронные, инфракрасные, пирометры, биметаллические, дистанционные, электроконтактные, жидкостные, термоэлектрические, газовые, термометры сопротивления и т.д. У каждого термометра - свой принцип действия и своя сфера применения. Рассмотрим некоторые из них.

3.1.Жидкостные термометры.

Жидкостные термометры используют тепловое расширение жидкостей. В зависимости от температурного диапазона, в котором предстоит служить термометру, его заполняют ртутью, этиловым спиртом или другими жидкостями.

Жидкостные термометры, заполненные ртутью, применяют для точных измерений температуры (до десятой доли градуса) в лабораториях. Термометры, заполненные спиртом, применяют в метеорологии для измерения температур ниже -38° (так как при более низкой температуре ртуть отвердевает).

Спиртовой термометр.

3.2.Газовые термометры.

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля*.

Принцип работы: В начале XVIII в. 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Цельсия зависимость давления газа при постоянном объёме выражается линейным законом. А отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра**.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаковый, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного веществ, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

*Зако́н Ша́рля или второй закон Гей-Люссака — один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так: P/Т=const, если V=const и m=const.

**Манометр (греч. manos — редкий, неплотный, разрежённый + др.-греч μέτρον — мера, измеритель) — прибор, измеряющий давление жидкости или газа.

3.3. Механические термометры.

Механические термометры действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется спираль из металла или биметалла - двух металлических полосок с разными способностями удлиняться при изменении температуры, скреплённых заклёпками. Механические термометры применяют для измерений температуры жидкостей и газов в отопительных и санитарных установках, в системах кондиционирования и вентиляции, а также для измерений температуры сыпучих и вязких сред (например, теста или глазури) в пищевой промышленности.

3.4.Оптические термометры.

Оптические термометры (пирометры) позволяют регистрировать температуру благодаря изменению светимости или спектра излучения тел. Оптические термометры применяют для измерения температуры поверхности объектов в труднодоступных (и жарких) местах.


3.5.Электрические термометры.

Принцип работы электрических термометров основан на изменении сопротивления* проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны на термопарах** (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C

*Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

**Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

4.Задачи.

1. Определите среднюю квадратичную скорость молекул кислорода и аргона в воздухе при температуре 20°C.


2. При какой температуре тепловая скорость молекул азота равна 90км/ч?


Опыт Галилея.

Заключение.

В заключении, мы рассмотрели понятие температуры с физической точки зрения, но ее можно рассматривать и как жизненно-важный фактор для человека.

К примеру: для человека, несвязанного с физикой, температура является как мера градации наших ощущений тепла и холода; на бытовом уровне температура воспринимается как параметр, служащий для количественного описания степени нагретости материального объекта.

В этом проекте были рассмотрены несколько видов температурных

шкал: Кельвина, Реомюра, Цельсия, Фаренгейта, Ранкина. Каждая шкал имеет свои особенности и недочеты.

Так же в проекте были затронуты некоторые виды термометров: жидкостные,

газовые, механические, оптические, электрические. У каждого термометра - свой принцип действия и своя сфера применения.

Решили задачи с применением формулы средней квадратичной скорости.

Провели опыт Галилея, связанный с изменением температуры. Created by Макаров and Степанов

Температура и температурные шкалы

Температура - степень нагретости вещества. Данное понятие основано на способности передавай тепло различными телами (веществом) друг другу при разной степени их нагретости и находиться в состоянии теплового равновесия при равных температурах. Причем тепло всегда передается от тела с более высокой температурой к телу с низкой температурой. Температура может быть также определена как параметр теплового состояния вещества, обуславливаемый средней кинетической энергией движения его молекул. Отсюда очевидно, что понятие «температура» для одной молекулы неприменимо, т.к. при какой-либо конкретной температуре энергия одной молекулы не может быть охарактеризована средним значением. Из данного положения следует, что понятие «температура» является статистическим.

Температура измеряется приборами, которые называются термометрами, в основу работы которых могут быть заложены различные физические принципы. Возможность измерения температуры такими приборами основывается на явлении теплового обмена телами с разной степенью нагретости и изменении их физических (термометрических) свойств при нагревании (охлаждении).

Для количественного определения температуры необходимо выбрать ту или иную температурную шкалу. Температурные шкалы строятся на основе определенных физических свойств какого-либо вещества, которые не должны зависеть от посторонних факторов и должны быть точно и удобно замеряемыми. На самом деле не существует ни одного термометрического свойства для термометрических тел или веществ, которые бы полностью удовлетворяли указанным условиям во всем диапазоне измеряемых температур. Поэтому температурные шкалы определяются для различных температурных диапазонов, построенных на произвольном допущении линейной зависимости

между свойством термометрического тела и температурой. Такие шкалы называются условными, а измеряемая по ним температура -условной.

4 К условной температурной шкале относится одна из распространенных шкал - шкала Цельсия. По этой шкале в качестве границ условного диапазона измерения приняты точки плавления льда и кипения воды при нормальном атмосферном давлении, а одну сотую часть данной шкалы принято называть одним градусом Цельсия (\ С),

| Однако, построение такой температурной шкалы с не пользованием жидкостных термометров может привести к ряду затруднений, связанных со свойствами используемых термометрических жидкостей. Например, показания ртутного и спиртового термометров, работающих на принципе расширения жидкости, будут различными при измерении одной и той же температуры в силу различных коэффициентов их объемного расширения.

| Поэтому для усовершенствования условной температурной шкалы было предложено использование газового термометра с использованием газов, свойства которых незначительно отличались бы от свойств идеального газа (водород, гелий, азот и др.).

С помощью газового термометра измерение температуры может быть основано на изменении объема или давления газа в замкнутой термосистеме.

На практике более широкое распространение получил способ, основанный на измерении давления при постоянном объеме, т.к. является более точным и легко реализуемым.

Для создания единой температурной шкалы, не связанной с термометрическими свойствами различных веществ для широкого интервала температур, Кельвином была предложена шкала температур, основанная на втором законе термодинамики. Эта шкала получила название термодинамической температурной шкалы.

В ее основе лежат следующие положения:

Если при обратимом цикле Карно тело поглощает теплоту 0, при температуре Т, и отдает тепло С? 3 при температуре Т 2 , то должно соблюдаться следующее равенство:

Т. О,

п<Г (21)

Согласно положениям термодинамики данное соотношение не зависит от свойств рабочего тела.

I Термодинамическая температурная шкала Кельвина стала использоваться как исходная шкала для других температурных шкал, не зависящих от термометрических свойств рабочего вещества. Для определения одного градуса по этой шкале интервал, находящийся между точками плавления льда и кипения воды, делится, как и в стоградусной шкале Цельсия, на сто равных частей. Таким образом, I П С оказывается равным ] °К

* По данной шкале, принятой называться абсолютной за нулевую точку принимается температура на 273,15° ниже точки плавления льда, называемая абсолютным нулем. Теоретически доказано, что при этой температуре прекращается всякое тепловое движение молекул любого вещества, поэтому эта шкала в известной мере носит теоретический характер.

Между температурой Т, выраженной в Кельвинах, и температурой *, выраженной в градусах Цельсия, действует соотношение:

1=Т-Т 0 , (2.2)

где Т 0 = 273,15 К.

Из существующих термометров наиболее точно реализуют абсолютную температурную шкалу газовые термометры в интервале не выше 1200 °С. Использование этих термометров при более высоких температурах сталкивается с большими трудностями, кроме того, газовые термометры являются достаточно сложными и громоздкими приборами, что для практических целей неудобно. Поэтому для практического и удобного воспроизведения термодинамической шкалы в широких диапазонах изменения температурпринятыииспользуютсяМеждународные практические

температурные шкапы (МПТШ). В настоящее время действует принятая в 1968 году температурная шкала МПТШ-68, построение которой базируется на реперных точках, определяемых фазовым состоянием веществ. Данные реперные точки используются для эталонизации температур в различных диапазонах, которые приведены в табл. 2.1.

Измерение теплоэнергетических величин

Одной из важнейших теплоэнергетических величин является температура. Температура – физическая величина, характеризующая степень нагретости тела или его теплоэнергетический потенциал. Практически все технологические процессы и различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как масса, длина и т.п., температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Если гомогенное тело разделить пополам, то его масса также делится пополам. Температура, являясь интенсивной величиной, таким свойством аддитивности не обладает, т.е. для системы, находящейся в термическом равновесии, любая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, подобно тому, как создаются эталоны экстенсивных величин.

Измерить температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относятся длина, плотность, объем, термоэ.д.с., электросопротивление и т.д. Вещества, характеризующиеся термометрическими свойствами, называю термометрическими. Средство измерения температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В этой связи представляется возможным построение температурных шкал на основе выбора любого термометрического свойства. В тоже время нет ни обного термометрического свойства, которое линейно связано с изменением температуры и не зависит от других факторов в широком интервале измерения температур.

Первые температурные шкалы появились в XVIII веке. Для построения их выбирались две опорные (реперные) точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 2 - t 1 называют основным температурным интервалом. Немецкий физик Габриель Даниель Фаренгейт (1715 г.), шведский физик Андерс Цельсий (1742 г.) и французский физик Рене Антуан Реомюр (1776 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовали расширение объема жидкости V , т.е.

t = a + bV , (1)

где а и b – постоянные коэффициенты.

Подставив в это уравнение V = V 1 при t = t 1 и V = V 2 при t = t 2 , после преобразования получим уравнение температурной шкалы:


В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32 0 , 0 0 и0 0 , а точке кипения воды t 2 – 212 0 , 80 0 и 100 0 . Основной интервал t 2 – t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта – t 0 F, градусом Реомюра t 0 R и градусом Цельсия t 0 C. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток – масштаб шкалы.

Для пересчета температуры из одной шкалы в другую используют соотношение:

(3)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (ртуть, спирт и др.), использующих одно и тоже термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Это обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для разных термометрических веществ. В частности, нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для разных капельных жидкостей.

На основе описанного принципа можно построить любое количество шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами.

Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной .

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия h тепловой машины, работающей по обратному циклу Карно, определяется только температурой нагревателя Т н и холодильника Т х и не зависит от свойств рабочего вещества:

(4)

где Q н и Q х – соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство

Следовательно, используя один объект в качестве нагревателя, а другой – в качестве холодильника и проведя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т кв и таяния льда Т тл равной 100 0 . Принятие такой разности преследовало цель сохранения преемственности числового значения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Т.О., обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q кв и Q тл, и приняв Т кв – Т тл = 100, получим:

и (6)

Для любой температуры Т нагревателя при неизменном значении Т тл холодильника и количества теплоты Q тл, отдаваемой ему рабочим веществом машины Карно, будем иметь:

(7)

Уравнение (6) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q, полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термодинамического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратному циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково).

Из определения к.п.д. следует, что при максимальном значении h=1 должна быть равна нулю Т х. Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают «К».

Термодинамическая шкала температур, основанная на двух реперных точках, обладает недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, т.к. они зависят от давления, а также от содержания солей в воде. Поэтому Кельвин и Менделеев высказали соображение о целесообразности построения термодинамической шкалы температур по одной реперной точке.

Консультативный комитет по термометрии Международного комитета мер и весов в 1954 году принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки – тройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешность не более 0,0001 К. Температура этой точки принята равной 273, 16 К, т.е. выше температуры таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который практически не реализуется, но имеет строго фиксированной положение.

В 1967 году XIII Генеральная ассамблея по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин – 1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть выражена также в градусах Цельсия:

t = T – 273,15 K (8)

Молекулярно-кинетическое определение

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

На практике для измерения температуры используют

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Шкала температур Кельвина - температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Цельсия

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1x10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, - это температура абсолютного нуля (Т = 0К).

Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10 -12 К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ . При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли.

Температура с термодинамической точки зрения

Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.

Введем функцию f (T ) , которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q 1 при T 1 выделяет тепло Q s при температуре в один градус , а другая машина, поглотив тепло Q 2 при T 2 , выделяет то же самое тепло Q s при температуре в один градус, то машина, поглощающая Q 1 при T 1 должна при температуре T 2 выделять тепло Q 2 .

Конечно, между теплом Q и температурой T существует зависимость и тепло Q 1 должно быть пропорционально Q s . Таким образом, каждому количеству тепла Q s , выделенного при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T , равное Q s , умноженному на некоторую возрастающую функцию f температуры:

Q = Q s f (T )

Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:

Для системы, в которой энтропия S может быть функцией S (E ) её энергии E , термодинамическая температура определяется как:

Температура и излучение

При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана - Больцмана

Шкала Реомюра

Предложена в году Р. А. Реомюром , который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25° C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции , на родине автора.

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273.15 −459.67 0 559.725 −90.14 −218.52 −135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255.37 −17.78 0 459.67 176.67 −5.87 −14.22 −1.83
Температура замерзания воды (Нормальные условия) 273.15 0 32 491.67 150 0 0 7.5
Средняя температура человеческого тела ¹ 310.0 36.6 98.2 557.9 94.5 12.21 29.6 26.925
Температура кипения воды (Нормальные условия) 373.15 100 212 671.67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная

ТЕМПЕРАТУРНАЯ ШКАЛА

ТЕМПЕРАТУРНАЯ ШКАЛА , градуированная шкала для измерения температуры. Для создания какой-либо температурной шкалы требуется выбрать термометрический параметр, который изменяется линейно с температурой (например, объем газа при постоянном давлении или расширение жидкости в трубке), две или более фиксированные, легко воспроизводимые точки, (например, точки кипения и замерзания воды) и задать произвольные деления (называемые градусами) между фиксированными точками. В качестве термометрических параметров обычно используют расширение газа, спирта, ртути, электрическое сопротивление и длину волны света. Наиболее распространены такие температурные шкалы как шкала ФАРЕНГЕЙТА, ЦЕЛЬСИЯ (стоградусная) и КЕЛЬВИНА (или абсолютная); они сокращенно обозначаются как °F, °C, и К. В шкале Фаренгейта как фиксированные точки первоначально использовались точка замерзания воды (принятая равной 32 °F) и температура человеческого тела (96 °F, позже - 98,6 °F). Интервал между ними был поделен на 64 градуса; температура кипения воды путем экстраполяции определяется как 212 °F. Шкала Цельсия использует в качестве 0 °С и 100 °С точки замерзания и кипения воды, соответственно; интервал поделен на 100 градусов. Ноль на шкале Кельвина, или термодинамической, (-273,15 °С, -459,67 °F)


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕМПЕРАТУРНАЯ ШКАЛА" в других словарях:

    ТЕМПЕРАТУРНАЯ ШКАЛА - ряд числовых точек на шкале термометра, распределённых внутри температурного интервала, ограниченного двумя точками постоянной температуры, принимаемыми за основные главные опорные точки (обычно для одинаковых физ. состояний, напр. температуры… … Большая политехническая энциклопедия

    температурная шкала - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN temperature scale …

    температурная шкала - temperatūros skalė statusas T sritis Energetika apibrėžtis Verčių, nurodančių atitinkamų temperatūros matavimo vienetų seką, visuma. atitikmenys: angl. temperature scale vok. Temperaturskala, f rus. температурная шкала, f pranc. échelle de… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    температурная шкала - шкала температур … Cловарь химических синонимов I

    Сейчас для измерения температуры воздуха, воды, тела и т.п. мы пользуемся шкалой ЦЕЛЬСИЯ, в которой один градус равняется 1/100 разности температур кипения воды и таяния льда. Существует еще и шкала РЕОМЮРА, в которой градус равен 1/80… … Энциклопедия русского быта XIX века

    температурная шкала Кельвина - Термодинамическая шкала температуры (ТК), в которой 0°K=–273.16°C (1K=1°C). Syn.: абсолютная температурная шкала; шкала Келвина … Словарь по географии

    температурная шкала Фаренгейта - Температурная шкала с точкой замерзания воды 32°F и точкой кипения 212°F [перевод в температурную шкалу Цельсия (С) делается по формуле: C=(F 32)5/9] … Словарь по географии

    температурная шкала Цельсия - Температурная шкала (t°С), предложенная шведским астрономом А. Цельсиусом, которая делит интервал между точкой замерзания и точкой кипения воды на 100 частей, так что точка замерзания воды при стандартном атмосферном давлении равна 0°С, а… … Словарь по географии

    температурная шкала Реомюра - термометр Реомюра — Тематики нефтегазовая промышленность Синонимы термометр Реомюра EN Reaumur scale … Справочник технического переводчика

    температурная шкала Рэнкина - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Rankine scale … Справочник технического переводчика