Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

· обладают высоким коэффициентом полезного действия;

· проведение ремонта возможно непосредственно на промыслах;

· для первичных двигателей могут быть использованы различные приводы;

· установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

· ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);

· малая подача насоса;

· ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.



Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Автоматизированные групповые замерные установки (АГЗУ)

АГЗУ - Автоматизированная Групповая Замерная Установка - блок учета для автоматического определения дебитов нефтяных скважин.

Автоматизированные групповые замерные установки применяются в следующих областях: напорные системы сбора продукции нефтяных скважин и автоматизированные системы управления технологическими процессами нефтедобычи.

Установка состоит из двух блоков: технологического и аппаратурного. В технологическом блоке размещены:

· замерный сепаратор (ёмкость сепарационная);

· переключатель скважин многоходовый ПСМ;

· счетчик жидкости;

· регулятор расхода;

· привод гидравлический;

· запорная арматура;

· блок гидропривода;

В аппаратурном блоке размещены:

· блок управления;

· блок индикации;

· блок питания.

Принцип работы. Продукция скважин по трубопроводам, подключенным к установке, поступает в переключатель скважин многоходовой ПСМ. При помощи переключателя ПСМ продукция одной из скважин направляется в сепаратор, а продукция остальных скважин направляется в общий трубопровод. В сепараторе происходит отделение газа от жидкости. Выделившийся газ поступает в общий трубопровод (через датчик расхода газа), а жидкость накапливается в нижней емкости сепаратора. С помощью регулятора расхода и заслонки, соединенной с поплавковым уровнемером, обеспечивается циклическое прохождение накопившейся жидкости через счетчик с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне. Управление переключением скважин осуществляется блоком управления по установленной программе или оператором.

Экскурсии

27 июня 2015 года мы под руководством Зиганшина С.С. отправились в Альметьевск на учебную буровую . Там проводились соревнования между несколькими буровыми бригадами.



6 июля 2015 года мы пошли в лабораторию ООО "Башнефть-Петротест". Там занимаются анализированием нефти на состав, плотность и другие параметры. Об этом нам подробно рассказала Наталья Викторовна. Также нам рассказали об основных экологических проблемах в нефтегазовой отрасли и об их решениях.

7 июля 2015 года мы поехали на куст № 1262 НГДУ "Туймазынефть", который находится в 25-м микрорайоне (недалеко от сероводородной лечебницы). Там нас встретил оператор 5-го разряда Тронтов А.В. Он же вместе с нашим руководителем Зиганшиным С.С. рассказали об устройстве и принципе работы ШГН, об основных обязанностях оператора.


Тронтов А.В. и Зиганшин С.С. объясняют принцип работы ШГН



9 июля 2015 года мы были в Производственном управлении "Обустройство и обслуживание месторождений" Таргин Механосервис (Октябрьский цех), находящийся по адресу ул. Северная 2. Там нас встретил директор Халиков Азат Венерович. Данное предприятие занимается ремонтом нефтепромысловых устройств (бурильные насосы, такой как мультифазный насос, ШГН, ЭЦН и др.). Предприятие производит ремонт как с выездом на месторождение, так и у себя в цеху.

Экскурсию вел механик, недавно выпустившийся студент, Михаил.





Вел экскурсию буровой мастер Валиуллин Айдар Фаритович. Там нам рассказали о процессе бурения скважины, подачи воды в скважину для очистки ее от бурового шлама.




На этом и закончились наши экскурсии.

Заключение

Во время учебной практики мы побывали на экскурсиях под руководительством Зиганшина С.С. Он рассказывал нам очень много и подробно о работе бурильщиков, о принципах работы буровых насосов, штанговых глубинных насосов, автоматизированных групповых замерных установок, о правилах техники безопасности на буровой. За время практики мы узнали много нового не только о принципах работы тех или иных установок, но и о тяжелом труде нефтяника.

Список использованной литературы и материалов

1) Разработка месторождений природных газов: Учебное пособие для вузов. 2011;

2)Федеральные нормы и правила в области промышленной безопасности «правила безопасности. Правила безопасности в нефтяной и газовой промышленности. ПБ 08-624-03, Госгортехнадзор России, 2015;

3) Инструкция по бурению наклонно-направленных скважин с кустовых площадок на нефтяных месторождениях Западной Сибири. РД 39-0148070-6.027-86;
4) Конторович А.Э., Нестеров И.И., Салманов Ф.К., и др. Геология нефти и газа Западной Сибири. -М.: Недра. – 2010. – 680 с.;
5) Основы технологии бурения скважин, учебное пособие, Дмитриев А.Ю.;

6) Справочник бурильщика, Ю.В.Вадецкий, 2008, Москва, Издательский центр "Академия";

7) Интернет источник, http://gazovikoil.ru/index.php?id=253, дата обращения 4 августа 2015 год;

8) Интернет источник, http://vseonefti.ru/upstream/shtangovyi-nasos.html, дата обращения 4 августа 2015 год.

Вызов на практику (гарантийное письмо).

Директору филиала ФГБОУ ВПО

"УГНТУ" в г. Октябрьском

профессору В.Ш. Мухаметшину

Уважаемый Вячеслав Шарифуллович, нефтяная компания ОАО Сургутнефтегаз гарантирует прохождение производственной практики студента 2 курса Герасимова Льва Сергеевича по специальности "Эксплуатация и обслуживание объектов добычи нефти и газа" сроком с 29 июня по 1 августа. Предприятие гарантирует оплачиваемую практику, а также проживание в общежитии.

Генеральный директор предприятия: (ФИО)

(Подпись)

Резюме
Герасимов Лев Сергеевич

Место жительство (регистрация): РФ, Республика Башкортостан,

район Белебеевский, р.п.Приютово, ул. Свердлова, дом 13, кв. 32

Штанговые скважинные насосные установки (ШСНУ) предназ­начены для подъема пластовой жидкости из скважины на дневную поверхность.

Свыше 70% действующего фонда скважин оснащены глубинны­ми скважинными насосами. С их помощью добывается в стране око­ло 30% нефти.

В настоящее время ШСНУ, как правило, применяют на скважи­нах с дебитом до 30...40 м 3 жидкости в сутки, реже до 50 м 3 при сред­них глубинах подвески 1000... 1500 м. В неглубоких скважинах уста­новка обеспечивает подъем жидкости до 200 м 3 /сут.

В отдельных случаях может применяться подвеска насоса на глу­бину до 3000 м.

Привод предназначен для преобразования энергии двигателя в возвратно-поступательное движение колонны насосных штанг.

Штанговая скважинная насосная установка включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Рис. 1. Штанговая скважинная насосная установка:

1 - фундамент; 2 - рама; 3 - электродвигатель; 4 - цилиндр; 5 - кривошип; б - груз; 7 - шатун; 8 - груз; 9 - стойка; 10 - балансир; 11 - механизм фиксации головки балансира; 12 - головка балансира; 13 - канатная подвеска; 14 - полированная штанга;

15 - оборудование устья скважины; 16 - обсадная колонна; 17 - насосно- компрессорные трубы; 18 - колонна штанг; 19 - глубинный насос; 20 - газовый якорь; 21 - уплотнение полированной штанги; 22 - муфта трубная; 23 - муфта штанговая; 24 - цилиндр глубинного насоса; 25 - плунжер насоса; 26 - нагнетательный клапан; 27 - всасывающий клапан.

В скважину на колонне НКТ под уровень жидкости спускают цилиндр насоса. Затем на насосных штангах внутрь НКТ спускают поршень (плунжер), который устанавливают в цилиндр насоса. Плунжер имеет один или два клапана, открывающихся только вверх, называемых выкидными. Верхний конец штанг крепится к головке балансира станка-качалки. Для направления жидкости из НКТ в нефтепровод и предотвращения ее разлива на устье скважины устанавливают тройник и выше него сальник, через который пропускают сальниковый шток.

Верхняя штанга , называемая полированным штоком, пропускается через сальник и соединяется с головкой балансира станка-качалки с помощью канатной подвески и траверсы.

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.



При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Приводы ПО «Уралтрансмаш»

Условное обозначение приводов на примере ПШГНТ4-1,5-1400:

ПШГН – привод штанговых глубинных насосов;

Т – редуктор установлен на тумбе;

1,5 – наибольшая длина хода устьевого штока 1,5 м;

1400 – наибольший допустимый крутящий момент на ведомом валу редуктора;

Лекция № 2. Подземное оборудование ШНУ

Назначение, типы, конструкция и маркировка скважинных

Штанговых насосов.

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводненностью до 99%, температу­рой до 130°С, содержанием сероводорода не более 50мг/л, минера­лизацией воды не более 10г/л.

Скважинные насосы имеют вертикальную конструкцию одинар­ного действия с неподвижным цилиндром, подвижным металличес­ким плунжером и шариковыми клапанами. Насосы изготавливают следующих типов:

1) НВ1 - вставные с замком наверху;

2) НВ2 - вставные с замком внизу;

3) НН - невставные без ловителя;

4) НН1 - невставные с захватным штоком;

5) НН2 - невставные с ловителем

Рис. 2. Насосы скважинные невставные
Цилиндр невставного (трубно­го) скважинного насоса (см. рис.2) присоединяется к колонне НКТ и вместе с ней спускается в скважину. Плунжер НСН вводится через НКТ в цилиндр вместе с под­вешенным к нему всасывающим кла­паном на насосных штангах. Чтобы не повредить плунжер при спуске, его диаметр принимают меньшим внутреннего диаметра НКТ пример­но на 6 мм. Применение НСН целе­сообразно в скважинах с большим де­битом, небольшой глубиной спуска и большим межремонтным перио­дом. Для смены насоса (цилиндра) не­обходимо извлекать штанги и трубы.

Насос НН1 состоит из цилиндра, плунжера, нагнетательного и всасы­вающего клапанов. В верхней части плунжера размещается нагнетатель­ный клапан и шток с переводником под штанги.

К нижнему концу плунжера с по­мощью наконечника на захватном штоке свободно подвешивается вса­сывающий клапан. При работе клапан сажается в седло корпуса. Подвешивать всасывающий клапан к плун­жеру необходимо для слива жидкости из НКТ перед их подъемом, а также для замены клапана без подъема НКТ. Наличие захватного штока внутри плунжера ограничивает длину его хода, которая в на­сосах НН1 не превышает 0,9 м.

В насосе НН2С в отличие от насоса НН1 нагнетательный клапан установлен на нижнем конце плунжера. Для извлечения всасываю­щего клапана без подъема НКТ используется ловитель (байонетный замок), который крепится к седлу нагнетательного клапана. Ловитель имеет две фигурные канавки для зацепления. В клетку всасывающе­го клапана ввинчен шпиндель (укороченный шток) с двумя утолщен­ными шпильками. После посадки всасывающего клапана в седло кор­пуса поворотом колонны штанг на 1-2 оборота против часовой стрел­ки добиваются того, что шпильки шпинделя скользят по канавкам ловителя и всасывающий клапан отсоединяется от плунжера. Захват осуществляется после посадки плунжера на шпиндель при повороте колонны штанг по часовой стрелке.

Насос ННБА позволяет осуществлять форсированный отбор жид­кости из скважин через НКТ, диаметр которых меньше диаметра плун­жера.

Это достигнуто особой конструкцией его - наличием автосцепа, включающего сцеп и захват, и сливного устройства. Насос в собран­ном виде без сцепа спускается в скважину на НКТ. Затем на штангах спускается сцеп с мерным штоком. Сцеп проталкивает золотник слив­ного устройства вниз и сцепляется с захватом, закрепленным на плун­жере, при этом сливное отверстие закрывается. При подъеме насоса следует поднять колонну штанг. При этом захват проталкивает зо­лотник вверх, открывая сливное отверстие. После этого сцеп отделя­ется от захвата и колонна штанг свободно поднимается.

Цилиндр вставного насоса (см. рис. 3) спускается внутри труб на колонне штанг и монтируется на них с помощью специального зам­кового соединения. Это позволяет менять вставной насос без спуска и подъема труб. Но при одинаковых диаметрах плунжеров вставной насос требует применения НКТ большего диаметра.

Скважинные насосы исполнения НВ1С предназначены для отка­чивания из нефтяных скважин маловязкой жидкости.

Насос состоит из составного цилиндра на нижний конец которо­го навернут сдвоенный всасывающий клапан, а на верхний конец - замок плунжера, подвижно расположенного внутри цилиндра, на резь­бовые концы которого навинчены: снизу сдвоенный нагнетательный клапан, а сверху - клетка плунжера. Для присоединения плунжера к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и закрепленным контргайкой. В расточке верхнего переводника цилиндра располо­жен упор, упираясь на который, плунжер обеспечивает срыв скважинного насоса с опоры.

Скважинные насосы испол­нения НВ1Б. Это насосы, по на­значению, конструктивному ис­полнению, принципу работы аналогичны насосам исполнения НВ1С и отличаются от них толь­ко тем, что в качестве цилиндра использованы цельные цилинд­ры исполнения ЦБ, характеризу­ющиеся повышенной прочнос­тью, износостойкостью и транс­портабельностью по сравнению с цилиндрами исполнения ЦС.

Скважинные насосы испол­нения НВ2 имеют область при­менения аналогичную области применения скважинных насо­сов исполнения НВ1, однако мо­гут быть спущены в скважины на большую глубину.

Рис. 3. Насосы скважинные вставные
Конструктивно скважинные насосы состоят из цилиндра с всасывающим клапаном, на­винченным на нижний конец.

На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра располо­жен защитный клапан, предотвращающий осаждение песка в цилин­дре при остановке насоса.

Внутри цилиндра подвижно установлен плунжер с нагнетатель­ным клапаном на нижнем конце и клеткой плунжера на верхнем кон­це. Для присоединения плунжера насоса к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и законт­ренным контргайкой.

В расточке верхнего конца цилиндра расположен упор.

Насос спускается в колонну насосно-компрессорных труб на ко­лонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок.

Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Цилиндры скважинных насосов выпускают в двух исполнениях:

® ЦБ - цельный (безвтулочный), толстостенный;

® ЦС - составной (втулочный).

Цилиндр втулочного насоса состоит из кожуха, в котором разме­щены втулки. Фиксация втулок в кожухе обеспечивается гайками.

Втулки подвергаются воздействию переменного внутреннего гид­равлического давления, обусловленного столбом откачиваемой жид­кости, и постоянного усилия, возникающего в результате торцевого обжатия рабочих втулок. Втулки всех насосов при различных внут­ренних диаметрах имеют одинаковую длину - по 300 мм.

Втулки всех насосов изготавливают трех типов: легированные из стали марки 38ХМЮА, стальные из стали марок 45 и 40Х, чугунные марки СЧ26-48.

Легированные втулки изготавливают только тонкостенными, стальные - тонкостенные, с увеличенной толщиной стенки и толсто­стенные, чугунные - толстостенные.

Для увеличения долговечности внутреннюю поверхность втулок упрочняют физико-термическими методами: чугунные - закалива­ют токами высокой частоты, стальные азотируют, цементируют, нит­рируют. В результате этой обработки твердость поверхностного слоя составляет до 80 HRc.

Механическая обработка втулок заключается в шлифовании и хонинговании. Основные требования к механической обработке - высокий класс точности и чистоты внутренней поверхности, а также перпендикулярность торцов к оси втулок.

Макрогеометрические отклонения внутреннего диаметра втулки должны быть не более 0,03 мм. Плоскостность торцевых поверхнос­тей должна обеспечивать равномерное непрерывное пятно по краске не менее 2/3 толщины стенок втулки.

Цельнотянутые цилиндры представляют собой длинную сталь­ную трубу, внутренняя поверхность которой рабочая. Труба при этом играет роль и цилиндра и кожуха одновременно. Подобная конструк­ция лишена таких недостатков, как негерметичность между торцами рабочих втулок, искривление оси цилиндра. При этом увеличивает­ся жесткость насоса и создается возможность использовать плунжер большого диаметра при одинаковом по сравнению с втулочным на­сосом наружном диаметре.

Плунжер глубинного насоса представляет собой стальную трубу с внутренней резьбой на концах. Для всех насосов длина плунжера постоянна и составляет 1200 мм. Их изготавливают из стали 45, 40Х или 38ХМЮА. По способу уплотнения зазора цилиндр – плунжер различают полностью металлические и гуммированные плунжеры. В паре металлический плунжер - цилиндр уплотнение создается нор­мированным зазором большой длины, в гуммированных - за счет манжет или колец, изготовленных из эластомера или пластмассы.

В настоящее время применяют плунжеры (рис. 4):

а) с гладкой поверхностью;

б) с кольцевыми канавками;

в) с винтовой канавкой;

г) с кольцевыми канавками, цилиндрической расточкой и скошен­ным концом в верхней части («пескобрей»);

д) манжетные плунжеры;

е) гуммированные плунжеры.

а - гладкий (исполнение Г); б - с кольцевыми канавками (исполнение К); в - с винтовой канавкой (исполнение В); г - типа «пескобрей» (исполнение П); д - манжетный, гуммированный плунжер; 1 - корпус плунжера; 2 - самоуплотняющееся резиновое кольцо; 3 - набухающие резиновые кольца.

Насосные штанги

Штанги насосные предназначены для передачи возвратно-поступательного движения плунжеру насоса (рис. 5). Изготавливаются в основном из легированных сталей круглого сечения диаметром 16, 19, 22, 25 мм, длиной 8000 мм и укороченные – 1000, 1200, 1500, 2000 и 3000 мм как для нормальных, так и для коррозионных условий эксплуатации.

Рис. 5 – Насосная штанга

Шифр штанг – ШН-22 обозначает: штанга насосная диаметром 22 мм. Марка сталей – сталь 40, 20Н2М, 30ХМА, 15НЗМА и 15Х2НМФ с пределом текучести от 320 до 630 МПа. Насосные штанги применяются в виде колонн, составленных из отдельных штанг, соединенных посредством муфт.

Муфты штанговые выпускаются: соединительные типа МШ (рис. 6) – для соединения штанг одинакового размера и переводные типа МШП – для соединения штанг разного диаметра.

Для соединения штанг применяются муфты – МШ16, МШ19, МШ22, МШ25; цифра означает диаметр соединяемой штанги по телу (мм). АО «Очерский машиностроительный завод» изготавливает штанги насосные из одноосно-ориентированного стеклопластика с пределом прочности не менее 800 МПа. Концы (ниппели) штанг изготавливаются из сталей. Диаметры штанг 19, 22, 25 мм, длина 8000 – 11000 мм.

Рис. 6 – Соединительная муфта насосной штанги:

а – исполнение I; б – исполнение II

Преимущества: снижение веса штанг в 3 раза, снижение энергопотребления на 18 – 20 %, повышение коррозионной стойкости при повышенном содержании сероводорода и др. Применяются непрерывные штанги «Кород».

Оборудование установки штангового глубинного насоса (УШГН)

Добыча нефти при помощи штанговых насосов - самый распространенный способ искусственного подъема нефти. Отличительная особенность ШСНУ состоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

обладание высоким коэффициентом полезного действия;

проведение ремонта возможно непосредственно на промыслах;

для первичных двигателей могут быть использованы различные приводы;

установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся: ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг); малая подача насоса; ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Конструктивно оборудование УШГН включает в себя наземную и подземную часть.

К наземному оборудованию относятся:

· привод (станок-качалка) - является индивидуальным приводом штангового глубинного насоса, спускаемого в скважину и связанного с приводом гибкой механической связью - колонной штанг;

· устьевая арматура с сальниками полированного штока предназначена для уплотнения штока и герметизации устья скважины.

К подземному оборудованию относятся:

· насосно-компрессорные трубы (НКТ), являющиеся каналом, по которому добываемая жидкость поступает от насоса на дневную поверхность.

· глубинный насос, предназначенный для откачивания из скважины жидкости, обводненной до 99% с температурой не более 130°С вставного или не вставного типов

· штанги - предназначены для передачи возвратно-поступательного движения плунжеру глубинного насоса от станка - качалки и является своеобразным штоком поршневого насоса.

На рисунке 1 представлена схема штанговой скважинно-насосной установки (УШГН).

Рисунок 1. Схема штанговой скважинно-насосной установки (УШГН)

1 - эксплуатационная колонна; 2 - всасывающий клапан; 3 - цилиндр насоса; 4 - плунжер; 5 - нагнетательный клапан; 6 - насосно-компрессорные трубы; 7 - насосные штанги; 8 - крестовина; 9 - устьевой патрубок; 10 - обратный клапан для перепуска газа; 11 - тройник; 12 - устьевой сальник; 13 - устьевой шток; 14 - канатная подвеска; 15 - головка балансира; 16 - балансир; 17 - стойка; 18 - балансирный груз; 19 - шатун; 20 - кривошипный груз; 21 - кривошип; 22 - редуктор; 23 - ведомый шкив; 24 - клиноременная передача; 25 - электродвигатель на поворотной салазке; 26 - ведущий шкив; 27 - рама; 28 - блок управления.

Установка работает следующим образом. Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг. При ходе плунжера вверх в цилиндре насоса снижается давление и нижний (всасывающий) клапан поднимается, открывая доступ жидкости (процесс всасывания). Одновременно столб жидкости, находящийся над плунжером, прижимает к седлу верхний (нагнетательный) клапан, поднимается вверх и выбрасывается из НКТ в рабочий манифольд (процесс нагнетания).

При ходе плунжера вниз верхний клапан открывается, нижний клапан давлением жидкости закрывается, а жидкость, находящаяся в цилиндре, перетекает через полый плунжер в НКТ.

Рисунок 2. Станок-качалка типа СКД

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка (пирамида); 4 - шатун; 5 - кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10 - ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 - противовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска.

Станок-качалка (рисунок 2), является индивидуальным приводом скважинного насоса.

Станок-качалка сообщает штангам возвратно-поступательное движение, близкое к синусоидальному. СК имеет гибкую канатную подвеску устьевого штока и откидную или поворотную головку балансира для беспрепятственного прохода спуско-подъемных механизмов (талевого блока, крюка, элеватора) при подземном ремонте.

Балансир качается на поперечной оси, укрепленной в подшипниках, и сочленяется с двумя массивными кривошипами с помощью двух шатунов, расположенных по обе стороны редуктора. Кривошипы с подвижными противовесами могут перемещаться относительно оси вращения главного вала редуктора на то или иное расстояние вдоль кривошипов. Противовесы необходимы для уравновешивания станка-качалки.

Все элементы станка-качалки: стойка, редуктор, электродвигатель крепятся к единой раме, которая закрепляется на бетонном фундаменте.

Кроме того, все СК снабжены тормозным устройством, необходимым для удержания балансира и кривошипов в любом заданном положении. Точка сочленения шатуна с кривошипом может менять свое расстояние относительно центра вращения перестановкой пальца кривошипа в то или иное отверстие. Этим достигается ступенчатое изменение амплитуды качаний балансира, т.е. длины хода плунжера.

Поскольку редуктор имеет постоянное передаточное число, то изменение частоты качаний достигается только изменением передаточного числа клиноременной трансмиссии и сменой шкива на валу электродвигателя на больший или меньший диаметр.

Скважинные штанговые насосы являются гидравлической машиной объемного типа, где уплотнение между плунжером и цилиндром достигается за счет высокой точности их рабочих поверхностей и регламентируемых зазоров.

Конструктивно все скважинные насосы состоят из цилиндра, плунжера, клапанов, замка (для вставных насосов), присоединительных и установочных деталей. При конструкции насосов соблюдается принцип максимально возможной унификации указанных узлов и деталей для удобства замены изношенных деталей и сокращения номенклатуры потребных запасных частей.

Насосы применяются следующих видов:

· невставные

· вставные.

Невставные насосы спускаются в полуразобранном виде. Сначала на НКТ спускают цилиндр насоса. А затем на штангах спускают плунжер с обратным клапаном. Невставной насос прост по конструкции. Цилиндр невставного насоса крепится непосредственно на колонне НКТ, обычно в нижней ее части. Ниже цилиндра находится замковая опора, в которой запирается всасывающий клапан. После спуска в скважину цилиндра и замковой опоры начинается спуск плунжера на колонне штанг. Когда в скважину спущено то количество штанг, которое необходимо для захода плунжера в цилиндр и посадки всасывающего клапана на замковую опору, производится окончательная подгонка высоты подвески плунжера. Всасывающий клапан опускается в скважину, закрепленный на нижнем конце плунжера с помощью захватного штока. Когда всасывающий клапан приводит в действие замковую опору, последняя запирает его с помощью механического замка или фрикционных манжет. Затем плунжер освобождается от всасывающего клапана путем вращения штанговой колонны против часовой стрелки. После этого компоновка плунжера приподнимается от всасывающего клапана на высоту, необходимую для свободного хода плунжера вниз.

Поэтому при необходимости замены такого насоса приходится поднимать из скважины сначала плунжер на штангах, а потом и НКТ с цилиндром.

Вставные штанговые насосы спускают в скважину в собранном виде. Предварительно в скважину опускается замковая опора на или рядом с последней НКТ.

В зависимости от условий в скважине в нее опускается механический нижний замок или нижний замок манжетного типа, если насос с замком внизу, либо механический верхний замок или верхний замок манжетного типа, если насос с замком наверху. Затем в скважину на колонне штанг опускается вся насосная установка с узлом посадки на замковую опору. После фиксации насоса на замковой опоре подгоняют высоту подвески плунжера так, чтобы он находился как можно ближе к нижнему основанию цилиндра. В скважинах с большим содержанием газа желательно выполнить подвеску так, чтобы подвижный узел насоса почти касался нижнего основания цилиндра, т.е. довести до минимума расстояние между всасывающим и нагнетательным клапаном при ходе плунжера вниз. Соответственно для смены такого насоса не требуется лишний раз производить спуск-подъем труб. Вставной насос работает по тому же принципу, что и невставной.

И тот и другой вид насоса имеет как свои преимущества, так и недостатки. Для каждых конкретных условий применяют наиболее подходящий тип. Например, при условии содержания в нефти большого количества парафина предпочтительно применение невставных насосов. Парафин, откладываясь на стенках НКТ, может заблокировать возможность поднятия плунжера вставного насоса. Для глубоких скважин предпочтительнее использовать вставной насос, чтобы снизить затраты времени на спуск-подъем НКТ при смене насоса.

Различают следующие типы скважинных насосов (рисунок 3):

НВ-1 - вставные с замком наверху;

НВ-2 - вставные с замком внизу;

НН - невставные без ловителя;

НН-1 - невставные с захватным штоком;

НН-2С - невставные с ловителем.

В условном обозначении насоса, например, НН2БА-44-18-15-2, первые две буквы и цифра указывают тип насоса, следующие буквы - исполнение цилиндра и насоса, первые две цифры - диаметр насоса (мм), последующие длину хода плунжера (мм) и напор (м), уменьшенные в 100 раз и последняя цифра - группу посадки.

Рисунок 3. Типы скважинных штанговых насосов

Применение насосов НН предпочтительно в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом, а насосы типов НВ в скважинах с небольшим дебитом, при больших глубинах спуска. Чем больше вязкость жидкости, тем принимается выше группа посадки. Для откачки жидкости с высокой температурой или повышенным содержанием песка и парафина рекомендуется использовать насосы третьей группы посадки. При большой глубине спуска рекомендуется применять насосы с меньшим зазором.

Насос выбирают с учетом состава откачиваемой жидкости (наличия песка, газа и воды), ее свойств, дебита и глубины его спуска, а диаметр НКТ - в зависимости от типа и условного размера насоса.

Принцип работы насосов заключается в следующем. При ходе плунжера вверх в межклапанном пространстве цилиндра создаётся разряжение, за счёт чего открывается всасывающий клапан и происходит заполнение цилиндра. Последующим ходом плунжера вниз межклапанный объём сжимается, за счёт чего открывается нагнетательный клапан и поступившая в цилиндр жидкость перетекает в зону над плунжером. Периодические совершаемые плунжером перемещения вверх и вниз обеспечивают откачку пластовой жидкости и нагнетания ее на поверхность в полость труб. При каждом последующем ходе плунжера в цилиндр поступает почти одно и тоже количество жидкости, которая затем переходит в трубы и постепенно поднимается к устью скважины.

Значительную часть фонда нефтедобывающих скважин в мире составляют скважины, эксплуатируемые установками ШГН. Это вызвано тем, что многие скважины сразу после окончания бурения вводятся в эксплуатацию насосным способом, а также переводом в эксплуатацию ШГН фонтанирующих и оборудованных бесштанговыми погружными электроцентробежными насосами скважин при уменьшении дебита до 100 т/сут. Таким образом, до 80% скважин в мире оборудованы именно установками ШГН.

Наземное и глубинное оборудование установки ШГН показано на рисунке 2.1. Установка состоит из приводного ЭД 1, соединенного ременной передачей 2 с редуктором 3. На выходном валу редуктора находится кривошип 4, а также противовес 5, на котором установлены грузы 6. Шатун 7 передает движение балансиру 8, к головке которого 9 прикреплена канатная подвеска 10. Полированный шток 11 проходит через сальниковый узел 12.

Подземное оборудование скважины состоит из обсадной колонны 13, насосно-компрессорных труб 14 и колонны насосных штанг 15.

Штанговый глубинный насос 19 состоит из цилиндра 16, приемного клапана 20 и нагнетательного клапана 17.

Штанговый глубинный насос (рисунок 2.2) состоит из цилиндра, приемного клапана и нагнетательного клапана.

Работает ШГН следующим образом. Цикл качания начинается в момент, когда шток (а соответственно и плунжер) движется вниз. Когда плунжер с открытым нагнетательным клапаном приближается к своему крайнему нижнему положению, всасывающий клапан закрыт. На полированный шток действует только нагрузка от веса штанг, погруженных в жидкость. В крайнем нижнем положении нагнетательный клапан закрывается.

Давление жидкости в цилиндре насоса практически равно давлению в насосных трубах над плунжером.

Рис.2.1.

Когда полированный шток начинает двигаться вверх, плунжер остается неподвижным по отношению к цилиндру насоса, так как упругие штанги не могут передать ему движение до тех пор, пока они не получат полного растяжения от веса столба жидкости в насосных трубах, приходящегося на площадь плунжера. Величина растяжения штанг прямо пропорциональна величине воспринятой части веса жидкости. Поэтому по мере увеличения растяжения штанг нагрузка на полированном штоке растет. Та часть жидкости, которую приняли на себя штанги, снимается с труб. Вследствие этого трубы сокращают свою

длину и их нижний конец, с закрытый всасывающим клапаном, движется вверх.

Так как между всасывающим и нагнетательным клапанами в цилиндре насоса находится практически несжимаемая жидкость, то движение нижнего конца труб вверх вызывает движение вверх и плунжера вместе с насосом.

Рис. 2.2.

  • 1 - насос; 2 - уровень жидкости; 3 - нефтеносный пласт;
  • 4 - колонна штанг; 5 - НКТ

В любой момент времени текущая величина растяжения штанг равна разности перемещений полированного штока и плунжера. Поэтому, чтобы штанги получили полное растяжение, необходимое для передачи движения плунжеру, полированный шток должен пройти путь, равный сумме растяжения штанг и сокращения труб.

Нагрузка на полированном штоке возрастает при одновременном перемещении его вверх. Во время последующего движения плунжера вверх на полированный шток действует неизменная нагрузка.

Из крайнего верхнего положения полированный шток начинает движение вниз. Однако плунжер не может двигаться вниз, так как под ним в цилиндре насоса находится практически несжимаемая жидкость. Нагнетательный клапан не может открыться, потому что давление в цилиндре насоса равно нулю, а над плунжером оно равно давлению всего столба жидкости в насосных трубах. Поэтому плунжер остается неподвижным по отношению к цилиндру насоса. Вследствие того, что плунжер стоит на месте, а полированный шток движется вниз, длина штанг сокращается, и нагрузка от веса жидкости постепенно передается на трубы. Давление в цилиндре насоса увеличивается пропорционально сокращению штанг.

Воспринимая нагрузку от веса жидкости, трубы соответственно удлиняются, и их нижний конец движется вниз. Так как плунжер опирается на несжимаемый столб жидкости в цилиндре насоса, то он движется вниз, оставаясь неподвижным по отношению к цилиндру насоса. Это вынужденное продвижение плунжера замедляет сокращение штанг и снятие нагрузки от веса жидкости. Поэтому штанги получают полное сокращение и полностью снимают с себя нагрузку от веса жидкости только тогда, когда полированный шток проходит расстояние, равное сумме сокращения штанг и растяжения труб от веса жидкости.

Вследствие уменьшения нагрузки при одновременном перемещении полированного штока вниз, происходит снятие со штанг нагрузки от веса жидкости.

Типы приводов штанговых глубинных насосов.

В настоящее время получили распространение два типа наземных приводов ШГН - станки-качалки и цепные приводы. Помимо этого существуют всевозможные экспериментальные приводы, среди которых можно выделить «линейный привод», «мобильные СК» (перевозимые на автомобиле) и «складные СК» (складывающиеся для прохождения через них систем полива сельскохозяйственных полей). В последнее время начинают использоваться гидравлические приводы ШГН. Поскольку управление каждым из этих приводов имеет свои особенности, необходимо рассмотреть их конструктивные особенности.

Конструкции некоторых типов СК изображены на рисунках 2.3, 2.4 и 2.5 (приводятся СК производства фирмы Lufkin, США). На рисунке 2.3 показана конструкция традиционного СК с двуплечим балансиром. На рисунке 2.4 приводится конструкция СК с одноплечим балансиром типа MARK И. Геометрия СК типа MARK II позволяет снизить момент на редукторе на 35% и уменьшить мощность приводного двигателя по сравнению с традиционным СК с двуплечим балансиром . И СК с пневматическим уравновешиванием показан на рисунке 2.5. При движении штока вниз газ в поршне сжимается, накапливая потенциальную энергию, и при движении штока вверх помогает электродвигателю поднять жидкость на поверхность.


Рис.2.3.

  • 1 - головка балансира; 2 - балансир; 3 - центральный подшипник; 4 - подшипник траверсы; 5 - лестница с ограждением; 6 - траверса; 7 - шатун; 8 - канатная подвеска;
  • 9 - траверсы канатной подвески; 10 - кривошип; 11 - подшипник пальца кривошипа;
  • 12-тормоз; 13 - противовес; 14 - ЭД; 15-стойка балансира; 16 - рычаг тормоза;
  • 17 - основание

Рис. 2.4.

  • 1 - головка балансира; 2 - траверса; 3 - балансир; 4 - центральный подшипник;
  • 5 - шатун; 6 - угловая опора; 7 - противовес; 8 - стойка балансира;
  • 9 - канатная подвеска; 10 - кривошип; 11 - траверсы канатной подвески; 12 - тормоз; 13 - редуктор; 14 - ЭД; 15 - подшипник пальца кривошипа; 16 - рычаг тормоза;
  • 17 - лестница платформы; 18 - основание

Рис.2.5.

  • 1 - головка балансира; 2 - подшипник воздушной емкости; 3 - подшипник траверсы;
  • 4 - траверса; 5 - балансир; 6 - центральный подшипник; 7 - воздушная емкость;
  • 8 - канатная подвеска; 9 - траверсы канатной подвески; 10 - лестница; 11 - шатун; 12 - угловая опора; 13 - шток поршня; 14 - стойка балансира;
  • 15 - подшипник пальца кривошипа; 16 - тормоз; 17 - кривошип; 18 - основание

Второй тип приводов - это цепные приводы. ЦП начали серийно выпускаться в начале 90-х годов XX века в Канаде и Китае, а в последующем - и в нашей стране .

Конструктивно ЦП состоит из вертикальной рамы, вдоль которой вращается цепь (рисунок 2.6). К одному из звеньев цепи прикреплен гибкий ремень, который совершает возвратно-поступательные движения. К другому концу ремня прикреплены траверсы канатной подвески полированного штока. Для цепных приводов характерны следующие особенности:

  • - движение полированного штока происходит с постоянной скоростью;
  • - большая длина хода (до 10 м);
  • - низкая скорость качаний (до 2 качаний в минуту).

На рисунке 2.7 показаны разработанные институтом ТатНИПИНефть цепные приводы типа ЦП80-6-1/4.

Рис. 2.6.

  • 1 - платформа с ограждением; 2 - шкив; 3 -траверса ремня; 4 - канатная подвеска;
  • 5 - замок штока; 6 - траверсы канатной подвески; 7 - ремень; 8 - полированный шток; 9 - звено соединения противовеса с ремнем; 10 - противовес; 11 - устье скважины; 12 - редуктор; 13 - кожух ременной передачи от ЭД; 14 - основание; 15 - полозья

Рис. 2.7.

На рисунке 2.8 показана динамика внедрения ЦП на месторождениях ОАО «Татнефть». Видно, что ЦП оснащены уже свыше тысячи скважин. В республике Башкортостан ЦП выпускаются на ООО «Нефтекамский завод нефтепромыслового оборудования».


Рис.2.8.

Так называемый «линейный» привод ШГН (Linear Rod Pump) разработан фирмой UNICO (США) в 2007 г. В «линейном» приводе на полированный шток одевается рейка с зубьями (рисунок 2.9), которая перемещается шестеренкой . Шестеренка соединяется с валом электродвигателя через редуктор. Главным достоинством линейного привода является низкая металлоемкость, и, соответственно, дешевизна. Линейный привод позволяет обеспечить только небольшую длину хода - не более 1,5 м, и нс может использоваться на глубоких скважинах, где необходима передача большой мощности ШГН.

Рис. 2.9.

  • 1 - штангодержатель; 2 - зубчатая рейка; 3 -корпус механизма; 4 - шестерня;
  • 5 - редуктор; 6 - масляная ванна; 7 - полированный шток; 8 - ЭД; 9 -основание

В последнее время наблюдается внедрение на нефтепромыслах еще одного типа приводов ШГН - гидравлического. Гидравлический привод ШГН типа

«Гейзер», разработанный ООО «НПП «ПСМ-Импэкс» (г. Екатеринбург) показан на рисунке 2.10. Гидравлическая установка «Гейзер» используется в качестве верхнего привода ШГН.

Гидравлический привод штангового насоса «Гейзер» состоит из следующих основных частей :

  • - мачта - опора с установленном на ней гидроцилиндром;
  • - укрытие, в котором установлены насосная станция и системы электронного управления;
  • - соединение насосной установки и гидроцилиндра выполнено при использовании рукавов высокого давления.

Рис.2.10.

1 - укрытие; 2 - съемный щит; 3 - рукава; 4 - плиты дорожные; 5 - щебень; 6 - короб кабельный на стойках; 7 - мачта-опора; 8 - устьевая арматура

Основные преимущества гидравлического привода заключаются в следующем:

  • - возможность плавной регулировки скорости спуска/подъема штанговой колонны;
  • - КПД гидравлического привода выше, чем у традиционных СК;
  • - возможность рекуперации энергии;
  • - простота и оперативность установки, наладки и демонтажа.

Основные технические данные гидравлического привода «Гейзер» приводятся в таблице 2.1.

Таблица 2.1

Основные технические данные гидравлического привода «Гейзер»

Система управления гидравлического привода «Гейзер» позволяет снимать динамограммы, при подключении эхолота и датчиков давления контролировать динамический и статический уровни, давление в выкидном коллекторе и затрубном пространстве.

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

  • обладают высоким коэффициентом полезного действия;
  • проведение ремонта возможно непосредственно на промыслах;
  • для первичных двигателей могут быть использованы различные приводы;
  • установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

  • ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);
  • малая подача насоса;
  • ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.

Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Штанговые насосы бывают вставные (НСВ) и невставные (НСН) .

Вставные штанговые насосы спускают в скважину в собранном виде. Предварительно в скважину на НКТ спускается специальное замковое приспособление, а насос на штангах спускают в уже спущенные НКТ. Соответственно для смены такого насоса не требуется лишний раз производить спуск-подъем труб.

Невставные насосы спускаются в полуразобранном виде. Сначала на НКТ спускают цилиндр насоса. А затем на штангах спускают плунжер с обратным клапаном. Поэтому при необходимости замены такого насоса приходится поднимать из скважины сначала плунжер на штангах, а потом и НКТ с цилиндром.

И тот и другой вид насоса имеет как свои преимущества, так и недостатки. Для каждых конкретных условий применяют наиболее подходящий тип. Например, при условии содержания в нефти большого количества парафина предпочтительно применение невставных насосов. Парафин, откладываясь на стенках НКТ, может заблокировать возможность поднятия плунжера вставного насоса. Для глубоких скважин предпочтительнее использовать вставной насос, чтобы снизить затраты времени на спуск-подъем НКТ при смене насоса.