11.07.2007

Показана возможность снижения потерь тепловой энергии и затрат при строительстве и эксплуатации тепловых сетей за счет применения осевых сильфонных компенсаторов для компенсации температурных деформаций теплопроводов.

Введение

Для компенсации температурных деформаций трубопроводов в тепловых сетях г. Санкт-Петербурга до начала 1980-х гг. применялись сальниковые, П-, S- и Г-образные компенсаторы, а во многих регионах России они применяются до сих пор. Каждому из этих компенсаторов свойственны отдельные серьезные недостатки.

Наиболее сложными в эксплуатации и монтаже являются сальниковые компенсаторы. Они требуют постоянного обслуживания, связанного с периодической подтяжкой уплотнения и заменой уплотнительного материала. При подземной прокладке теплопроводов установка сальниковых компенсаторов требует строительства дорогостоящих камер.

Длительная практика эксплуатации сальниковых компенсаторов показала, что даже при наличии регулярного их обслуживания имеют место протечки теплоносителя. При большой протяженности тепловых сетей суммарная величина затрат на пополнение и нагрев теплоносителя может достигать достаточно больших значений.

Для П-образных компенсаторов характерны большие габариты, увеличение зон отчуждения дорогостоящей городской земли, необходимость строительства дополнительных направляющих опор, а при подземной прокладке – специальных камер (что довольно затруднительно в городских условиях). Да и стоимость П-образных компенсаторов, особенно больших диаметров, достаточно высока.

В целях повышения надежности теплоснабжения, снижения капитальных вложений, потерь, связанных с утечками, и эксплуатационных расходов в начале 1980-х гг. специалисты ведущих Ленинградских проектных институтов рассмотрели возможность применения сильфонных компенсаторов (СК) в тепловых сетях вместо П-образных и сальниковых компенсаторов и с 1981 г. в ГУП «ТЭК СПб» при проведении капитального ремонта и строительства тепловых сетей началась установка осевых СК.

Типы сильфонных компенсаторов, конструкция и особенности их эксплуатации




Осевые сильфонные компенсаторы. Компенсаторы типа ОПКР (рис. 1а) разработаны для замены сальниковых компенсаторов и предназначены, как и компенсаторы типа КСО (рис. 1б), для наземной и канальной прокладок теплопроводов с тепловой изоляцией из минеральной ваты.

При подземной прокладке теплопроводов в каналах, туннелях, камерах, а также при надземной прокладке и в помещениях, СК могут устанавливаться на прямолинейных участках теплопровода в любом месте между двумя неподвижными опорами (концевыми или промежуточными), при этом не должно быть препятствий для возможных перемещений кожуха вместе с частью теплопровода. Между двумя неподвижными опорами допускается размещать только один СК.

При монтаже и эксплуатации осевых СК не допускается нагружать их поперечными усилиями, изгибающим и крутящим моментами, а также весом присоединяемых участков труб и фасонных изделий. С этой целью при монтаже осевых СК обязательна установка направляющих опор. Первая пара направляющих опор должна устанавливаться с двух сторон от СК на расстоянии 2-4 Ду. Вторая пара ставится с каждой стороны от СК на расстоянии 14-16 Ду. Примеры установки осевых СК показаны на рис. 2.

Число и необходимость последующих направляющих опор определяется при проектировании по результатам расчета теплопровода на устойчивость.

Некоторые предприятия для увеличения компенсирующей способности компенсаторов применяют спаренные осевые сильфонные компенсаторы, тем самым, нарушая вышеизложенные требования. Это может привести к потере устойчивости компенсаторов (рис. 3).

При размещении СК у неподвижной опоры расстояние до нее должно быть в пределах 24 Ду. В этом случае направляющие опоры устанавливаются только с одной стороны. С другой стороны их функцию выполняет неподвижная опора.

В случае размещения СК в камерах функции направляющих опор могут выполнять стенки камер со специальной конструкцией обвязки входного и выходного проемов камеры.

Направляющие опоры следует применять, как правило, охватывающего типа (хомутовые, трубообразные, рамочные), принудительно ограничивающие возможность поперечного или углового сдвига и не препятствующие осевому перемещению.

Начиная с 1981 г. в тепловых сетях, находящихся на балансе ГУП «ТЭК СПб», было установлено более 14 тыс. СК. Анализ состояния трубопроводов и элементов конструкций тепловых сетей ГУП «ТЭК СПб», выполненный в 1998 г., подтвердил, что общее количество поврежденных СК за период внедрения составило 92 шт.

Основными причинами повреждений СК были:

  • нарушение требований к монтажу осевых СК во время их монтажа;
  • нарушение соосности трубопроводов во время монтажа, а также из-за просадки направляющих опор в процессе эксплуатации;
  • разрушение неподвижных опор из-за неправильного расчета нагрузок на них;
  • наружная коррозия сильфонов осевых компенсаторов из-за сверхдопустимого содержания хлоридов в грунтовых водах (рис. 4).

Дальнейший анализ условий монтажа и применения СК показал, что эксплуатация трубопроводов и других элементов тепловой сети в г. Санкт-Петербурге и его пригородах происходит при воздействии следующих факторов:

  • высокий уровень грунтовых вод и частые подъемы воды при наводнениях приводят к периодическому их затоплению;
  • большая часть трубопроводов и других элементов тепловых сетей ГУП «ТЭК СПб» находится в зонах с повышенной коррозионной активностью грунта (насыпные и торфяные почвы, повышенная концентрация хлоридов, блуждающие токи, высокий уровень и электропроводность грунтовых вод);
  • посыпание проезжей части дорог солью и увеличение концентрации хлоридов в грунте приводит к снижению коррозионной стойкости металла (аустенитной нержавеющей стали) наружного слоя компенсаторов (75% теплотрасс расположены около проезжей части дорог). Как известно, скорость коррозии аустенитной стали резко увеличивается в среде, содержащей хлор;
  • длительное хранение компенсаторов под открытым небом без антикоррозийной защитной смазки, нарушения инструкции по их транспортировке без защитных кожухов приводят к ударам, появлению царапин, вмятин и т.д.;
  • нарушение технологии строительно-монтажных работ приводит к проникновению влаги под изоляцию или нарушению соосности, что сокращает срок работы компенсатора.

Еще в 1983 г. Технический совет Главног о топливно-энергетического управления Ленинграда потребовал от проектных, конструкторских организаций и заводов-изготовителей:

  • решить проблему влияния хлоридов на долговечность металла сильфонов;
  • доработать конструкцию компенсационного устройства таким образом, чтобы обеспечить перемещение компенсатора в защитном кожухе только в продольном направлении. Это обеспечит повышение надежности конструкции независимо от качества установки подвижных и неподвижных опор;
  • доработать конструкцию защитного кожуха для обеспечения 100% герметизации сильфона от проникновения грунтовых вод;
  • предусмотреть нанесение антикоррозийного покрытия на наружную поверхность сильфонов СК, применяемых в тепловых сетях;
  • для увеличения сроков службы СК необходимо ужесточить требования к хранению, транспортировке и монтажу с целью недопущения их повреждений и коррозии при их хранении.

Сильфонные компенсационные устройства (СКУ). Во избежание разрушения осевых СК изза несоосности трубопроводов, возникающей из-за просадки грунта, в гг. Санкт-Петербурге, Москве и в других регионах России стали применять СКУ различных конструкций. СКУ должны были конструктивно защищать сильфон от поперечных усилий, изгибающих и крутящих моментов, а также от попадания грунтовых вод на сильфон и грунта между гофрами.

Учитывая недостатки, выявленные при эксплуатации осевых СК, а также недостатки конструкций разработанных компенсационных устройств рядом российских производителей, ОАО «НПП «Компенсатор» в 1998 г. начало выпуск принципиально новой конструкции СКУ (рис. 5) для теплопроводов с теплоизоляцией из минеральной ваты, в пенополиуретановой (ППУ) или в армопенобетонной (АПБ) изоляции.

В отличие от СКУ, изготавливаемых другими предприятиями-производителями, этой конструкцией предусмотрены:

  • направляющие опоры цилиндрической формы, установленные с обеих сторон от сильфона, которые телескопически перемещаются вместе с патрубками СКУ по внутренней поверхности толстостенного кожуха. Это придает конструкции достаточную жесткость и обеспечивает соосность сильфонов и их защиту от поперечных усилий и изгибающих моментов, возникающих при возможных прогибах теплопровода из-за просадки грунта или направляющих опор;
  • ограничители хода сильфона, которые также защищают сильфон от крутящих моментов;
  • толстостенный кожух, изготавливаемый из труб, применяемых для теплопроводов, который задает направление перемещения цилиндрических направляющих опор СКУ, и, в то же время, обеспечивает защиту сильфона от нагрузок, возникающих под действием давления грунта и автотранспорта при бесканальной прокладке теплопровода.

При использовании СКУ данной конструкции устанавливать направляющие опоры на расстоянии 2-4 Ду от СКУ нет необходимости. При бесканальной прокладке также гарантируется защита сильфона от поперечных усилий и изгибающих моментов, которые могут возникнуть из-за просадки грунта. Так, на СКУ Ду 1000, установленных на Нирюнгринской ГРЭС, несоосность составила 17 мм, но СКУ осталось работоспособным.

Стартовые сильфонные компенсаторы для трубопроводов в ППУ-изоляции. В Западной Европе и в некоторых регионах России для компенсации температурных деформаций теплопроводов при бесканальной прокладке не применяют осевые СК. В этих случаях используется способ частичной разгрузки температурных деформаций теплопровода за счет предварительного нагрева теплопровода во время его монтажа до температуры, равной 50% от максимальной.

Суть этого способа заключается в следующем. Между двумя неподвижными опорами теплопровода необходимо установить стартовый СК (или, так называемый, Е-компенсатор), после чего теплопровод заполняется теплоносителем и нагревается до температуры, равной 50% от максимальной рабочей. При этом стартовый компенсатор (рис. 6) должен сжаться на полную величину рабочего хода. После выдержки при указанной температуре (как правило, в течение суток) кожухи стартового компенсатора завариваются между собой. И так на всем теплопроводе между каждой парой неподвижных опор. При этом сильфон стартового компенсатора исключается из дальнейшей работы теплопровода, и теплопровод остается в эксплуатации в напряженном состоянии.

Кроме того, использование предварительно нагретых во время монтажа теплопроводов имеет еще несколько неудобств:

  • окончательный монтаж теплопровода (заварку кожухов всех стартовых компенсаторов и их последующую тепло-, гидроизоляцию) приходится производить во время отопительного сезона;
  • при выполнении ремонта теплопровода необходимо на данном участке теплотрассы заменять и стартовый сильфонный компенсатор и выполнить в дальнейшем вышеизложенные требования по его монтажу и изоляции.

Применение при бесканальной прокладке предварительно нагретых во время монтажа теплопроводов с ППУ-изоляцией с использованием стартовых компенсаторов возможно на тепловых сетях в тех системах теплоснабжения, где применяется качественное регулирование тепловых нагрузок. Кроме того, их можно использовать в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны.

В пиковые же режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают.


Предварительно изолированные осевые сильфонные компенсаторы. Учитывая проблемы применения стартовых компенсаторов, а также особенности климатических условий регионов и соответствующие режимы отопления, в г. Санкт-Петербурге (с его болотистыми почвами и регулярными наводнениями) и многих других регионах России при бесканальной прокладке труб в ППУ-изоляции уже более 15 лет применяются предварительно изолированные осевые СК различных конструкций (рис. 7).

Основным недостатком всех этих конструкций предизолированных осевых СК является возможность попадания грунтовых вод под полиэтиленовую оболочку теплоизоляции, а также на сильфон через подвижную часть СК. Чтобы грунтовые воды не попадали на провода системы ОДК, провода внутри компенсационного устройства прокладываются в гидрозащитном кембрике. Тем самым, компенсационные устройства (длиной до 4,5 м каждое) исключаются из системы ОДК теплопровода.

Проанализировав недостатки существующих конструкций, ОАО «НПП «Компенсатор» в 2006 г. разработало осевое СКУ для бесканальной прокладки теплопроводов в ППУ-изоляции в полиэтиленовой оболочке с системой ОДК (рис. 8).

Разработка велась на базе отработанной конструкции СКУ (рис. 5). Здесь также предусмотрены цилиндрические направляющие опоры, установленные с обеих сторон от сильфона, которые телескопически перемещаются вместе с патрубками СКУ по внутренней поверхности толстостенного кожуха.

Гидроизоляция подвижной части СКУ выполняется с помощью защитного сильфона, позволяющего гарантировать полную защиту рабочего сильфона, теплоизоляции и проводов системы ОДК от проникновения грунтовых вод в течение всего срока службы СКУ.

Провода системы ОДК, во избежание контакта с металлическими поверхностями СКУ, проложены во фторопластовой трубке, имеющей отверстия для проникновения воды в случае нарушения герметичности сильфона. При этом компенсационное устройство не исключается из системы ОДК теплопровода.

Воздушная прослойка между двумя сильфонами обеспечивает хорошую тепловую изоляцию в средней части СКУ.

Тепловая изоляция патрубков СКУ может выполняться во время монтажа одновременно с заливкой пенополиуретаном стыков теплопровода с СКУ. С этой целью к фланцам СКУ приварена стальная гильза, на которую посажена термоусаживающаяся муфта, по наружному диаметру соответствующая полиэтиленовой оболочке теплопровода. Такое конструктивное решение гарантирует защиту ППУ-изоляции от проникновения в нее грунтовых вод.

Для исключения попадания грунта и ограничения попадания грунтовых вод на защитный сильфон с торцов кожуха установлены уплотнения.

Применение данных компенсационных устройств позволит в полном объеме решить проблему компенсации температурных деформаций теплопроводов с ППУ-изоляцией в полиэтиленовой оболочке на протяжении всего срока эксплуатации.

Вместо заключения

Учитывая возрастающие требования по сроку службы теплопроводов тепловых сетей, в ОАО НПП «Компенсатор» в 2006 г. проведено несколько НИОКР, по результатам которых:

1. внедрено антикоррозионное покрытие наружной поверхности сильфонов, стойкое при воздействии агрессивных сред на протяжении всего срока службы СК;

2. совместно с одним из ведущих материаловедческих институтов г. Санкт-Петербург а 52 проведена ОКР по подтверждению срока службы СК не менее срока службы теплопроводов (рис. 9) при максимально возможном для любого региона России содержании хлоридов в сетевой воде;

3. изменена геометрия гофров сильфонов, что позволило увеличить на 10-20% компенсирующую способность осевых СК практически без изменения их жесткости. В заключение приведем данные расчета экономической эффективности замены сальниковых компенсаторов на сильфонные, выполненный ГУП «ТЭК СПб» в 2006 г. (таблица).

Цель установки это поглощение теплового расширения трубы. Обычно температура рабочей среды (жидкости) является основным источником изменения размеров трубопровода, однако в некоторых случаях температура окружающей среды может вызвать тепловое движение трубопровода, т.е. его удлинение или сжатие.

Схемы установки осевых сильфонных компенсаторов

Компенсатор в середине прямого участка трубопровода. Компенсатор в крайнем положении прямого участка трубопровода.
Компенсатор на прямом участке Z-образного участка трубопровода.
Компенсатор на Т-образном участке трубопровода.

Определение точек установки компенсаторов и направляющие опор для трубы

Для осуществления правильной работы трубопровода следует разделение систему трубопровода на отдельные участки, с целью установки на них сильфонных компенсаторов. Основная задача здесь - контроль расширения трубопровода между неподвижными опорами.

Неподвижные опоры предназначены для приема всех сил, действующих на трубопроводе.

Направляющие (скользящие) опоры для труб обеспечивают выравнивание движения сильфона компенсатора и предотвращают смещение трубопровода со своей оси. При отсутствии направляющих опор сильфонный компенсатор, имеющий высокую гибкость в сочетании с внутренним давлением, может потерять свою устойчивость и произойдет авария.

Рекомендация при установке трубопровода с компенсатором

Основная рекомендация состоит в том, чтобы установить осевой сильфонный компенсатор устанавить рядом с неподвижной опорой. Обычно осевой сильфонный компенсатор устанавлиают на растоянии не более 2Ду от неподвижной опоры.

Расстояния между скользящими напрвляющими опорами трубопровода

Первая скользящая опора должна быть расположена не более 4 диаметров труб от сильфонного компенсатора. Расстояние между первой и второй направляющей 14 диаметра труб.

L 1 = 4Ду (максимум)

L 2 = 14Ду (максимум)

L 3 см.график. - Максимальное расстояние между осями направляющих опор

Правильное расположение компенсаторов КСО, неподвижных и направляющих опор и влияние направляющих (скользящих) на устойчивость трубопровода показано на рисунке ниже.

Так же вы можете посмотреть компесаторы ксо, в зависимости от их условного диаметра.

Правила установки и обслуживания Компенсаторов КСО:

1. Компенсатор КСО устанавливают на прямолинейном участке трубопровода, ограниченном двумя неподвижными опорами. Изгибы трубопровода на этом участке категорически не допускаются. Не используйте компенсаторы КСО для компенсирования удлинений больших, чем в таблице технических данных: осевой ход нельзя превышать ни при каких рабочих условиях.

Трубы с длинами, для которых недостаточно одного сильфонного компенсатора КСО, необходимо разделить на отдельные участки приемлемой длины. При этом каждый участок ограничивается неподвижными опорами и в отношении температурных удлинений рассматривается как отдельный трубопровод. На компенсируемом участке не должно быть врезок. Исключение: радиаторные стояки системы отопления. Другие случаи рассматриваются индивидуально.

2. Неподвижные, направляющие и скользящие опоры должны быть сконструированы и установлены так, чтобы они могли выдерживать распорные усилия и усилия жёсткости компенсаторов КСО, а также вес трубопровода с водой и влияние врезок.

3. Компенсаторы КСО тепловых удлинений трубопроводов нельзя использовать в качестве демпфера колебаний.

4. С компенсаторами КСО надо обращаться осторожно, чтобы не повредить их при ударе и не оцарапать об острые предметы.

5. Осевые компенсаторы должны испытывать нагрузки только в продольном направлении, не допускается напряжение кручения и воздействие изгибающего момента.

6. Не допускается попадание сыпучих и твёрдых веществ в гофры компенсатора КСО; также запрещено покрывать сильфон компенсатора тепловой изоляцией. Убедитесь также, что посторонние предметы не попали между гофрами, если перед установкой компенсаторы КСО хранились какое-то время!

7. Перед вваркой компенсаторов КСО в трубную систему гофры (если они есть) компенсатора КСО должны быть надлежащим образом защищены от искр сварки (если компенсатор не оснащен наружным кожухом, его сильфон необходимо обмотать защитным материалом) для предотвращения попадания частиц раскаленного металла.

8. Кабель электросварки не должен контактировать с сильфоном компенсатора КСО.

9. Компенсаторы КСО могут быть снабжены внутренней гильзой и поэтому должны быть установлены направляющей стрелкой по направлению движения воды в трубе.

10. Компенсаторы КСО нельзя подвергать воздействию сильных электрических токов При сварных работах в сети трубопроводов и при сварке относящихся к этой сети деталей необходимо следить за тем, чтобы обратный ток к массе не проходил через компенсатор КСО. Эти компенсаторы нельзя использовать в качестве защитного или обратного трубопровода (это необходимо учитывать при выполнении мероприятий по выравниванию потенциалов).

11. Расстояние от компенсатора КСО до ближайшей (1-й) направляющей опоры должно быть 4Ду, между 1-ой и 2-ой направляющими опорами — 14Ду, остальные скользящие и направляющие опоры должны быть установлены в соответствии с нормативами. В случае горизонтальной установки вес трубы должен быть распределён на неподвижные и направляющие опоры и не должен воздействовать на компенсатор КСО.

12. При установке муфтовых резьбовых компенсаторов КСО в системах водоснабжения необходимо затягивать их гаечным ключом. Не перетягивайте! Это грозит выходом компенсатора КСО из строя. О допустимом усилии проконсультируйтесь в нашем техотделе.

13. Если компенсатор КСО устанавливается на вертикальном или горизонтальном стояке, необходимо, чтобы вес трубы не воздействовал на компенсатор КСО (не сжиимал, не растягивал и не сгибал его). Для этого необходимо предварительно смонтировать трубопровод, неподвижные и направляющие опоры и лишь после этого врезать компенсатор КСО. Если трубопровод загрязнен, то перед монтажом компенсаторов его необходимо промыть.

14. В трубопроводной системе с компенсаторами КСО недопустимы гидроудары!

Осевые сильфонные компенсаторы КСО представляют собой механически нагруженные детали. Срок их службы зависит от числа циклов срабатывания под нагрузкой. Компенсаторы КСО должны быть доступны для контроля и замены.

Порядок проведения монтажных работ трубопровода с компенсаторами КСО:

1. Монтаж трубопровода, неподвижных и направляющих опор.

2. В случае, если трубопровод был загрязнён, требуется промывка трубопровода.

3. Вырезка участка трубопровода на месте установки компенсатора, строго по его размерам (вырезка «катушки»).

4. Установка компенсатора («врезка»).

Компенсаторы КСО, запроектированные в соответствии с типовыми схемами, могут быть установлены используя предварительное растяжение или сжатие. Компенсаторы КСО нельзя деформировать — изгибать, растягивать или сжимать, пытаясь подогнать их при монтаже («врезке») под ненадлежащее пространство.

Не допускается чрезмерное сдавливание, растягивание или сгибание компенсатора в момент монтажа (трубопроводом, не зафиксированным неподвижными и направляющими опорами)!

Узнавайте цены по телефону у наших специалистов

Сильфонные компенсирующие устройства нивелируют напряжения, возникающие в трубопроводе при смене температуры транспортируемой среды. Они используются на теплотрассах промышленного и общего назначения.

Фиксация сильфонных компенсаторов для тепловых сетей осуществляется между неподвижными опорами. Устройства крепятся посредством сварки. При проведении монтажных работ учитывается соосность трубопровода. Наличие отклонений - повод для проведения дополнительных мероприятий.

При прокладке тепловых сетей используются следующие компенсаторы:

  • Компенсаторы в ППУ изоляции

Компенсаторы СКУ.ППУ и СКУ.ППМ имеют дополнительную теплоизоляцию. В первом случае используется пенополиуретан, во втором - пенополиминеральный состав. Изделия устойчивы к перепадам температур, просты в монтаже. Зазоры, образующиеся при установке компенсаторов, изолируются посредством защитной скорлупы.

Компенсационные устройства СКУ.М и ОПКР не имеют собственной теплоизоляции. Для снижения тепловых потерь допускается использование минеральной ваты, пенобетона, ППУ скорлупы.

Купить компенсаторы для тепловых систем

Приобрести качественные сетей поможет компания «КОМПЕНС». Мы предлагаем продукцию собственного производства . Изделия отличаются длительным сроком службы и простотой обслуживания. В наличии решения для теплотрасс диаметром 57…1420 мм. Компенсаторы изготавливаются из отечественной стали. Каждое изделие проверяется сотрудниками ОТК.

Сотрудничество с компанией «КОМПЕНС» - это:

  • Возможность купить качественные изделия . При производстве продукции используется высокоточное оборудование. Изделия соответствуют действующим отраслевым стандартам. На все компенсаторы распространяется гарантия.
  • Отсутствие наценок и переплат . Товары реализуются напрямую с завода . Компания «КОМПЕНС» не сотрудничает с посредническими организациями. Вы получаете изделия по ценам производителя.
  • Качественное обслуживание . Менеджеры «КОМПЕНС» - опытные специалисты. Они порекомендуют сильфонные компенсаторы для тепловых сетей, отвечающие требованиям покупателя. Клиенты «КОМПЕНС» получают консультации по любым интересующим вопросам.
  • Своевременная доставка . Продукция отправляется со склада компании. Заказчик получает компенсаторы строго в обозначенный срок.

Подробную информацию о реализуемых товарах содержит сайт «КОМПЕНС». В нем представлены характеристики сильфонных компенсаторов, обозначены особенности их эксплуатации и монтажа.

Компания «КОМПЕНС» сотрудничает с коммерческими и государственными организациями. Принимаются заявки от подрядчиков, обслуживающих компаний, перерабатывающих и добывающих предприятий. При покупке крупной партии продукции предоставляется скидка.

Для оформления заявки свяжитесь с менеджерами «КОМПЕНС», либо воспользуйтесь функционалом нашего интернет-магазина.

Логунов В.В., заместитель генерального директора, Поляков В.Л., главный конструктор проектов по теплосетям, ОАО «НПП «Компенсатор»; Слепченок В.С., начальник отдела технического анализа, ГУП «ТЭК СПб», г. Санкт-Петербург

Показана возможность снижения потерь тепловой энергии и затрат при строительстве и эксплуатации тепловых сетей за счет применения осевых сильфонных компенсаторов для компенсации температурных деформаций теплопроводов.


Введение

Для компенсации температурных деформаций трубопроводов в тепловых сетях г. Санкт-Петербурга до начала 1980-х гг. применялись сальниковые, П-, S- и Г-образные компенсаторы, а во многих регионах России они применяются до сих пор. Каждому из этих компенсаторов свойственны отдельные серьезные недостатки.

Наиболее сложными в эксплуатации и монтаже являются сальниковые компенсаторы. Они требуют постоянного обслуживания, связанного с периодической подтяжкой уплотнения и заменой уплотнительного материала. При подземной прокладке теплопроводов установка сальниковых компенсаторов требует строительства дорогостоящих камер.

Длительная практика эксплуатации сальниковых компенсаторов показала, что даже при наличии регулярного их обслуживания имеют место протечки теплоносителя. При большой протяженности тепловых сетей суммарная величина затрат на пополнение и нагрев теплоносителя может достигать достаточно больших значений.

Для П-образных компенсаторов характерны большие габариты, увеличение зон отчуждения дорогостоящей городской земли, необходимость строительства дополнительных направляющих опор, а при подземной прокладке - специальных камер (что довольно затруднительно в городских условиях). Да и стоимость П-образных компенсаторов, особенно больших диаметров, достаточно высока.

В целях повышения надежности теплоснабжения, снижения капитальных вложений, потерь, связанных с утечками, и эксплуатационных расходов в начале 1980-х гг. специалисты ведущих Ленинградских проектных институтов рассмотрели возможность применения сильфонных компенсаторов (СК) в тепловых сетях вместо П-образных и сальниковых компенсаторов и с 1981 г. в ГУП «ТЭК СПб» при проведении капитального ремонта и строительства тепловых сетей началась установка осевых СК.


Типы сильфонных компенсаторов, конструкция и особенности их эксплуатации

Осевые сильфонные компенсаторы. Компенсаторы типа ОПКР (рис. 1а) разработаны для замены сальниковых компенсаторов и предназначены, как и компенсаторы типа КСО (рис. 1 б), для наземной и канальной прокладок теплопроводов с тепловой изоляцией из минеральной ваты.






При подземной прокладке теплопроводов в каналах, туннелях, камерах, а также при надземной прокладке и в помещениях, СК могут устанавливаться на прямолинейных участках теплопровода в любом месте между двумя неподвижными опорами (концевыми или промежуточными), при этом не должно быть препятствий для возможных перемещений кожуха вместе с частью теплопровода. Между двумя неподвижными опорами допускается размещать только один СК.

При монтаже и эксплуатации осевых СК не допускается нагружать их поперечными усилиями, изгибающим и крутящим моментами, а также весом присоединяемых участков труб и фасонных изделий. С этой целью при монтаже осевых СК обязательна установка направляющих опор. Первая пара направляющих опор должна устанавливаться с двух сторон от СК на расстоянии 2-4 Ду. Вторая пара ставится с каждой стороны от СК на расстоянии 14-16 Ду. Примеры установки осевых СК показаны на рис. 2.

Число и необходимость последующих направляющих опор определяется при проектировании по результатам расчета теплопровода на устойчивость.

Некоторые предприятия для увеличения компенсирующей способности компенсаторов применяют спаренные осевые сильфонные компенсаторы, тем самым, нарушая вышеизложенные требования. Это может привести к потере устойчивости компенсаторов (рис. 3).

При размещении СК у неподвижной опоры расстояние до нее должно быть в пределах 2-4 Ду. В этом случае направляющие опоры устанавливаются только с одной стороны. С другой стороны их функцию выполняет неподвижная опора.

В случае размещения СК в камерах функции направляющих опор могут выполнять стенки камер со специальной конструкцией обвязки входного и выходного проемов камеры.

Направляющие опоры следует применять, как правило, охватывающего типа (хомутовые, трубообразные, рамочные), принудительно ограничивающие возможность поперечного или углового сдвига и не препятствующие осевому перемещению.

Начиная с 1981 г. в тепловых сетях, находящихся на балансе ГУП «ТЭК СПб», было установлено более 14 тыс. СК. Анализ состояния трубопроводов и элементов конструкций тепловых сетей ГУП «ТЭК СПб», выполненный в 1998 г., подтвердил, что общее количество поврежденных СК за период внедрения составило 92 шт.

Основными причинами повреждений СК были:

  • нарушение требований к монтажу осевых СК во время их монтажа;
  • нарушение соосности трубопроводов во время монтажа, а также из-за просадки направляющих опор в процессе эксплуатации;
  • разрушение неподвижных опор из-за неправильного расчета нагрузок на них;
  • наружная коррозия сильфонов осевых компенсаторов из-за сверхдопустимого содержания хлоридов в грунтовых водах (рис. 4).

Дальнейший анализ условий монтажа и применения СК показал, что эксплуатация трубопроводов и других элементов тепловой сети в г. Санкт-Петербурге и его пригородах происходит при воздействии следующих факторов:

  • высокий уровень грунтовых вод и частые подъемы воды при наводнениях приводят к периодическому их затоплению;
  • большая часть трубопроводов и других элементов тепловых сетей ГУП «ТЭК СПб» находится в зонах с повышенной коррозионной активностью грунта (насыпные и торфяные почвы, повышенная концентрация хлоридов, блуждающие токи, высокий уровень и электропроводность грунтовых вод);
  • посыпание проезжей части дорог солью и увеличение концентрации хлоридов в грунте приводит к снижению коррозионной стойкости металла (аустенитной нержавеющей стали) наружного слоя компенсаторов (75% теплотрасс расположены около проезжей части дорог). Как известно, скорость коррозии аустенитной стали резко увеличивается в среде, содержащей хлор;
  • длительное хранение компенсаторов под от крытым небом без антикоррозийной защитной смазки, нарушения инструкции по их транспортировке без защитных кожухов приводят к ударам, появлению царапин, вмятин и т.д.;
  • нарушение технологии строительно-монтажных работ приводит к проникновению влаги под изоляцию или нарушению соосности, что сокращает срок работы компенсатора.

Еще в 1983 г. Технический совет Главного топливно-энергетического управления Ленинграда потребовал от проектных, конструкторских организаций и заводов-изготовителей:

  • решить проблему влияния хлоридов на долговечность металла сильфонов;
  • доработать конструкцию компенсационного устройства таким образом, чтобы обеспечить перемещение компенсатора в защитном кожухе только в продольном направлении. Это обеспечит повышение надежности конструкции независимо от качества установки подвижных и неподвижных опор;
  • доработать конструкцию защитного кожуха для обеспечения 100% герметизации сильфона от проникновения грунтовых вод;
  • предусмотреть нанесение антикоррозийного покрытия на наружную поверхность сильфонов СК, применяемых в тепловых сетях;
  • для увеличения сроков службы СК необходимо ужесточить требования к хранению, транспортировке и монтажу с целью недопущения их повреждений и коррозии при их хранении.

Сильфонные компенсационные устройства (СКУ). Во избежание разрушения осевых СК из-за несоосности трубопроводов, возникающей из-за просадки грунта, в гг. Санкт-Петербурге, Москве и в других регионах России стали применять СКУ различных конструкций. СКУ должны были конструктивно защищать сильфон от поперечных усилий, изгибающих и крутящих моментов, а также от попадания грунтовых вод на сильфон и грунта между гофрами.



Учитывая недостатки, выявленные при эксплуатации осевых СК, а также недостатки конструкций разработанных компенсационных устройств рядом российских производителей, ОАО «НПП «Компенсатор» в 1998 г. начало выпуск принципиально новой конструкции СКУ (рис. 5) для теплопроводов с теплоизоляцией из минеральной ваты, в пенополиуретановой (ППУ) или в армопенобетонной (АПБ) изоляции.

В отличие от СКУ, изготавливаемых другими предприятиями-производителями, этой конструкцией предусмотрены:

  • направляющие опоры цилиндрической формы, установленные с обеих сторон от сильфона, которые телескопически перемещаются вместе с патрубками СКУ по внутренней поверхности толстостенного кожуха. Это придает конструкции достаточную жесткость и обеспечивает соосность сильфонов и их защиту от поперечных усилий и изгибающих моментов, возникающих при возможных прогибах теплопровода из-за просадки грунта или направляющих опор;
  • ограничители хода сильфона, которые также защищают сильфон от крутящих моментов;
  • толстостенный кожух, изготавливаемый из труб, применяемых для теплопроводов, который задает направление перемещения цилиндрических направляющих опор СКУ, и, в то же время, обеспечивает защиту сильфона от нагрузок, возникающих под действием давления грунта и автотранспорта при бесканальной прокладке теплопровода.

При использовании СКУ данной конструкции устанавливать направляющие опоры на расстоянии 2-4 Ду от СКУ нет необходимости. При бесканальной прокладке также гарантируется защита сильфона от поперечных усилий и изгибающих моментов, которые могут возникнуть из-за просадки грунта. Так, на СКУ Ду 1000, установленных на Нирюнгринской ГРЭС, несоосность составила 17мм, но СКУ осталось работоспособным.

Стартовые сильфонные компенсаторы для трубопроводов в ППУ-изоля

, Тепловые сети, в т.ч. системы ГВС .

Эффект от внедрения:
- для объекта уменьшение потребления холодной воды и топлива, а также электроэнергии, снижение затрат, связанных с техническим обслуживанием и ремонтом компенсаторов;
- для муниципального образования снижение потребления топлива и тарифов для населения, повышение надежности теплоснабжения.

Применение сильфонных компенсаторов для компенсации температурных деформаций, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформации трубопроводов теплопроводов позволяет снизить потери тепловой энергии, затраты при строительстве и эксплуатации тепловых сетей и повысить их надежность.

Прямолинейный участок трубопровода между неподвижными опорами при изменении температурного режима тепловой сети получает некоторое приращение своей длины за счет температурного расширения материалы трубопровода. Возникающие при этом напряжения, растяжения или сжатия могут привести к изгибу труб или их разрушению. Гофры сильфонного компенсатора установленного на этом участке компенсатора, упруго деформируясь, воспринимают в пределах компенсирующей способности изменения длины участка трубопровода, вызванное температурным расширением.

Для компенсации температурных деформаций трубопроводов в тепловых сетях г. Санкт-Петербурга до начала 1980-х гг. применялись сальниковые, П-, S- и Г-образные компенсаторы, а во многих регионах России они применяются до сих пор. Каждому из этих компенсаторов свойственны отдельные серьезные недостатки.

Наиболее сложными в эксплуатации и монтаже являются сальниковые компенсаторы. Они требуют постоянного обслуживания, связанного с периодической подтяжкой уплотнения и заменой уплотнительного материала. При подземной прокладке теплопроводов установка сальниковых компенсаторов требует строительства дорогостоящих камер.

Длительная практика эксплуатации сальниковых компенсаторов показала, что даже при наличии регулярного их обслуживания имеют место протечки теплоносителя. При большой протяженности тепловых сетей суммарная величина затрат на пополнение и нагрев теплоносителя может достигать достаточно больших значений.

Для П-образных компенсаторов характерны большие габариты, увеличение зон отчуждения дорогостоящей городской земли, необходимость строительства дополнительных направляющих опор, а при подземной прокладке - специальных камер (что довольно затруднительно в городских условиях). Да и стоимость П-образных компенсаторов, особенно больших диаметров, достаточно высока.

В целях повышения надежности теплоснабжения, снижения капитальных вложений, потерь, связанных с утечками, и эксплуатационных расходов в начале 1980-х гг. специалисты ведущих Ленинградских проектных институтов рассмотрели возможность применения сильфонных компенсаторов в тепловых сетях вместо П-образных и сальниковых компенсаторов и с 1981 г. в ГУП «ТЭК СПб» при проведении капитального ремонта и строительства тепловых сетей началась установка осевых сильфонных компенсаторов. Годовой экономический эффект, проявляющийся в снижении сметной стоимости строительства, экономии материалов, в сокращении трудозатрат при строительстве и тепловых потерь при эксплуатации теплопровода, при замене 1 шт. П-образного компенсатора на осевой сильфонный составил: для DN 500 - 6,65 тыс. руб., для DN 700 - 12,07 тыс. руб. (в ценах 1986 года).

Удельная годовая экономическая эффективность от замены сальникового компенсатора на сильфонный в процессе эксплуатации составила (в ценах 2006 г.) [источник: www.kompensator.ru]:

Диаметр компенсатора, мм Холодная вода Топливо Электроэнергия Обслуживание и ремонт, тыс. руб. Итого, тыс.руб.
м3 тыс. руб. тут тыс. руб. кВт-ч тыс. руб.
до 300 77,5 1,05 0,7 0,90 105,9 0,10 2,71 4,76
от 300 до 600 186,8 2,52 1,6 2,17 255,4 0,24 6,30 11,23
от 600 до 1200 355,7 4,80 3,0 4,12 486,1 0,45 9,90 19,27

Компенсаторы сильфонные в зависимости от вида выполняют роль неподвижных опор, позволяют устанавливать компенсатор без дополнительных крепежных элементов или применяются в трубопроводах для компенсации температурного расширения, предотвращения разрушения трубопровода при деформации, герметизации трубопроводов, компенсации несоосностей, возникших вследствие монтажных работ.

Конструкция сильфонных компенсаторов

Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000°С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

В зависимости от назначения и условий применения используются различные конструктивные исполнения компенсаторов, представляющие собой различные комбинации сильфонов, присоединительной и ограничительной арматуры, направляющих патрубков и защитных кожухов.

Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые). На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией).

СКУ (СКФ) предназначены для компенсации температурных изменений длины трубопровода, снятия вибрационных нагрузок, герметизации трубопроводов, предотвращения разрушения и деформациитрубопроводов. Для сильфонных узлов возможна подземная безканальная укладка, изоляция сильфонных устройств СКУ (СКФ). Основным элементом компенсационного устройства является осевой сильфонный компенсатор, установленный в защитный кожух, который обеспечивает защиту сильфона от поперечных усилий, изгибающих и крутящих моментов, а также от механических повреждений и попадания грунта между гофрами. Компенсационные сильфонные устройства имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течении всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение СКУ (СКФ) обеспечивает надежную и эффективную защиту трубопроводов от статических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударах. Благодаря использованию при изготовлении сильфонных узлов из высококачественной нержавеющей стали, СКУ (СКФ) способны работать в самых жестких условиях.

Компенсация температурных деформаций для труб в ППУ-изоляции

В последние годы в России для бесканальной прокладки теплопроводов стали широко применяться стальные трубы с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке по ГОСТ 30732.

В Западной Европе и в некоторых регионах России для компенсации температурных деформаций теплопроводов при бесканальной прокладке не применяют осевые сильфонные компенсаторы. В этих случаях используется способ частичной разгрузки температурных деформаций теплопровода с помощью стартовых компенсаторов за счет предварительного нагрева теплопровода во время его монтажа до температуры, равной 50% от максимальной.

Суть этого способа заключается в следующем. Между двумя неподвижными опорами теплопровода устанавливается стартовый сильфонный компенсатор, после чего теплопровод заполняется теплоносителем и нагревается до температуры, равной 50% от максимальной рабочей. При этом стартовый компенсатор должен сжаться на полную величину рабочего хода. После выдержки при указанной температуре (как правило, в течение суток) кожухи стартового компенсатора завариваются между собой. После этого соединяются проводники СОДК и на стартовые компенсаторы наносится тепло-гидроизоляция. И так на всем теплопроводе между каждой парой неподвижных опор.

При этом сильфон стартового компенсатора исключается из дальнейшей работы теплопровода, и теплопровод остается в эксплуатации в напряженном состоянии.

Кроме того, использование предварительно нагретых во время монтажа теплопроводов имеет еще несколько неудобств:

  • окончательный монтаж теплопровода (заварку кожухов всех стартовых компенсаторов и их последующую тепло-гидроизоляцию) приходится производить во время отопительного сезона;
  • при выполнении ремонта теплопровода необходимо на данном участке теплотрассы заменять и стартовый сильфонный компенсатор и выполнить в дальнейшем вышеизложенные требования по его монтажу и изоляции.

Применение при бесканальной прокладке предварительно нагретых во время монтажа теплопроводов с использованием стартовых компенсаторов возможно в регионах с мягкими климатическими условиями, когда перепады температур теплоносителя относительно средней температуры незначительны и стабильны.

В пиковые же режимы отопления, а также при остывании теплоносителя и его сливе, что довольно часто происходит во многих регионах России, температурные напряжения на трубопровод и неподвижные опоры резко возрастают.

Учитывая проблемы применения стартовых компенсаторов, а также особенности климатических условий регионов и соответствующие режимы отопления, при бесканальной прокладке предварительно изолированных труб уже более 15 лет применяются предварительно изолированные осевые сильфонные компенсационные устройства различных конструкций.


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .