Необходимость соединения между собой подводящих и отводящих электроэнергию линий обусловливает применение на станциях, подстанциях, распределительных устройствах и пунктах сборных шин.

К сборным шинам присоединяют все генераторы или трансформаторы, вводы и отходящие линии. Электрическая энергия поступает на сборные шины и по ним распределяется к отдельным отходящим линиям. Таким образом, сборные шины являются узловым пунктом схемы соединения, через который протекает вся мощность станции, подстанции или распределительного пункта . Повреждение или разрушение сборных шин означает прекращение подачи электроэнергии потребителям. Поэтому сборным шинам уделяют серьезное внимание при проектировании, монтаже и эксплуатации электроустановок.

Простейшей системой является так называемая одиночная система шин (рис. 1), применяемая в электроустановках малой мощности с одним источником питания.

Рис. 1. Одиночная система шин

На станциях и подстанциях, имеющих два и более трансформатора или генератора, в целях повышения надежности снабжения потребителей электроэнергией шины секционируют, т. е. делят на две, а иногда и большее число частей. К каждой секции должно быть присоединено по возможности равное число генераторов или трансформаторов и отходящих линий (рис. 2).

Рис. 2. Одиночная секционированная система шин с межсекционным разъединителем

Секционирование шин сообщает схеме большую эксплуатационную гибкость (при выходе из работы одной секции шин отключается только часть вводов и отходящих линий).

Отдельные секции шин могут быть соединены между собой или выключателями. При секционировании шин разъединителем последний большей частью разомкнут. При этом обе секции работают раздельно, и при повреждении одной из секций питания лишается только часть потребителей. Кроме того, при раздельной работе трансформаторов снижаются токи короткого замыкания на стороне вторичного напряжения.

В случае повреждения трансформатора его отключают и обе секции соединяют между собой разъедиителем, отключив предварительно для предотвращения перегрузки неответственные потребители.

Допустима также работа с включенным разъединителем для обеспечения равномерного распределения нагрузки между питающими линиями. В этом случае при аварии на одной из секций прекращается питание электроэнергией всех потребителей на время, необходимое для разделения секций. В случае же автоматического отключения одного из источников питания второй источник будет перегружен в течение времени, необходимого для отключения неответственных потребителей.

При наличии межсекционного выключателя (рис. 3) последний может быть также при работе замкнутым или разомкнутым.

Рис. 3. Одиночная секционированная система шин с межсекционным выключателем

При работе с замкнутым выключателем его снабжают максимальной токовой защитой, которая автоматически отключает поврежденную секцию. Однако такое решение не рекомендуется, поскольку оно не дает существенных преимуществ по сравнению со схемами с межсекционными разъединителями.

Применение межсекционного выключателя рекомендуется только в тех случаях, когда он используется для автоматического включения резервного питания от другого рабочего источника и при нормальной работе электроустановки находится в разомкнутом состоянии.

При наличии на подстанции одиночной секционированной системы шин резервирующие друг друга отходящие линии следует присоединять к различным секциям шин.

Для большей надежности питания и большего удобства эксплуатационных переключений на крупных станциях и подстанциях применяют двойную систему шин (рис. 4), которая допускается только при наличии соответствующего обоснования в каждом отдельном случае.

Рис. 4. Двойная система сборных шин

При нормальной работе электроустановки одна система шин является рабочей, а другая - резервной. Обе системы шин могут быть соединены между собой шиносоединительным выключателем, который позволяет осуществить переход с одной системы шин на другую без перерыва в подаче энергии, а также может быть использован в качестве замены любого из выключателей электроустановки. В последнем случае линию, с которой выключатель снят для ремонта, присоединяют к резервной системе шин и соединяют рабочую и резервную системы шин шиносоединительным выключателем.

    секция системы сборных шин - Часть системы сборных шин, отделенная от другой ее части коммутационным аппаратом [ГОСТ 24291—90] Тематики электроснабжение в целом …

    секция (системы сборных) шин - 44 секция (системы сборных) шин Часть системы сборных шин, отделенная от другой ее части коммутационным аппаратом 605 02 08* de Sammelschienenabschnitt en busbar sectior fr troncon d’un jeu de barres Источник: ГОСТ 24291 90: Электрическая часть… …

    ГОСТ 28668.1-91 Э: Низковольтные комплектные устройства распределения и управления. Часть 2. Частные требования к системам сборных шин (шинопроводам) - Терминология ГОСТ 28668.1 91 Э: Низковольтные комплектные устройства распределения и управления. Часть 2. Частные требования к системам сборных шин (шинопроводам) оригинал документа: 2.3.11. Гибкая секция шинопровода секция с проводниками и… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 28668.1-91: Низковольтные комплектные устройства распределения и управления. Часть 2. Частные требования к системам сборных шин (шинопроводам) - Терминология ГОСТ 28668.1 91: Низковольтные комплектные устройства распределения и управления. Часть 2. Частные требования к системам сборных шин (шинопроводам) оригинал документа: 2.3.11. Гибкая секция шинопровода секция с проводниками и… … Словарь-справочник терминов нормативно-технической документации

    секция шин - Часть системы сборных шин, отделенная от другой ее части коммутационным аппаратом. [ГОСТ 24291 90] EN busbar section the part of a busbar located between two switching devices (or disconnector(s) put in series or between a switching device and… … Справочник технического переводчика

    секция - 99 секция Сборочная единица часть стрелы, мачты. Примечание При наличии составных секций каждая составная часть, как правило, обозначается цифровым индексом, например, А1, А2 (нижняя секция); Б1, Б2 (промежуточная секция) и т.д. Источник: ГОСТ Р… … Словарь-справочник терминов нормативно-технической документации

    переходная секция - 3.5.4 переходная секция: Фасонная секция кабельного лотка или кабельной лестницы, предназначенная для соединения секций с различной шириной основания. Источник … Словарь-справочник терминов нормативно-технической документации

    Переходная секция шинопровода - 2.3.8. Переходная секция шинопровода секция, предназначенная для соединения двух секций одной линии, но разного типа или с разными значениями номинального тока. Источник … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения - Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… … Словарь-справочник терминов нормативно-технической документации

    СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения - Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации: Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… … Словарь-справочник терминов нормативно-технической документации

Схемы РУ с одной системой сборных шин

Схемы РУ с коммутацией присоединений одним выключателем

Схема РУ с одной несекционированной системой сборных шин. Это самая простая схема из используемых на практике (рис. 1.4). Она содержит систему сборных шин А, шинные разъединители QS1..., выключатели присоединений Q1..., линейные разъединители QS2... . Каждое присоединение обязательно содержит выключатель и шинный разъединитель, а линейный разъединитель может отсутствовать, когда возможность подачи напряжения с противоположного конца исключена. Это относится к присоединениям двухобмоточных трансформа-

торов и генераторов.

В этой схеме оперативные переключения производятся выключателями, а разъединители предназначены только для создания видимого разрыва при ремонтах оборудования.

Рис 1.4 Рис 1.5

Схема РУ с одной секционированной системой сборных шин (рис. 1.5). Эта схема является логическим развитием предыдущей схемы и позволяет секционированием шины, то есть разделением ее на части, уменьшить объем погашений. Секционирование шины осуществляется секционным выключателем QB с двумя разъединителями QBS1 и QBS2. Секционирование должно выполняться так, чтобы каждая секция имела источники энергии (генераторы, трансформаторы) и соответствующую нагрузку.

Нормальное состояние секционного выключателя QB зависит от вида установки, где используется эта схема.

При использовании схемы на станции секционные выключатели нормально замкнуты, чтобы увеличить жесткость взаимной синхронной связи генераторов. При КЗ в зоне сборных шин поврежденная секция отключается автоматически, а остальные секции остаются в работе.

При использовании схемы на подстанции секционные выключатели, как правило, нормально разомкнуты, чем обеспечивается ограничение тока КЗ. Для повышения надежности электроснабжения эти выключатели снабжаются устройствами автоматического включения резервного питания (АВР), дающими сигнал на включение выключателей в случаях отключения трансформатора.

Число секций зависит от числа и мощности источников энергии и присоединений. При числе секций более трех сборные шины часто замыкают в кольцо или образуют схему звезды.

Схема кольца (рис. 1.6) достигается соединением между собой концов шин, в результате чего создается двухстороннее питание присоединений. За счет образования кольца надежность схемы повышается, причем преимущества ее реализуются особенно хорошо при глубоком секционировании.

Схема звезды (рис. 1.7). В этой схеме отдельные секции соединяются между собой через уравнительную систему шин УСШ с помощью секционных выключателей. Для ограничения токов КЗ могут устанавливаться секционные реакторы. Однако использование этой схемы связано с более сложными конструктивными решениями, поэтому на практике она применяется редко.

Достоинства схем с одиночной системой шин:

Схемы просты и наглядны в обслуживании, что практически исключает ошибочные операции с разъединителями;

Обеспечивается достаточная надежность электроснабжения, если потребитель связан с РУ двумя линиями, подсоединенными к разным секциям;

Относительно низкая стоимость.

Недостатки схем с одиночной системой шин:

Происходит погашение секции при ремонте или при аварии на секции, в выключателе или в шинном разъединителе присоединений;

Ремонт выключателя и линейного разъединителя связан с отключением присоединения.

Область применения. Схемы с одной секционированной системой сборных шин применяются в РУ напряжением 6-35 кВ на подстанциях и в генераторных распределительных устройствах ТЭЦ.

Схемы РУ с двумя системами сборных шин

Схемы РУ с двумя несекционированными системами сборных шин (рис. 1.8).

Схемы этого типа содержат две системы сборных шин А1 и А2, шиносоединительный выключатель QA с разъединителями, два шинных разъединителя QS1 и QS2 на каждое присоединение, выключатель присоединения Q и, если необходимо, линейный разъединитель QS3, предназначенный для безопасного ремонта этого выключателя.

В схемах с двумя системами сборных шин каждое присоединение подключается к шинам двумя шинными разъединителями, один из которых обязательно нормально отключен. Эти разъединители выполняют две функции: являются как ремонтными, то есть создают видимый разрыв, так и оперативными элементами, с помощью которых производится переключение присоединений с одной системы шин на другую.

Схемы РУ с двумя секционированными системами сборных шин (рис. 1.9).

При большом числе присоединений одну или обе сборные шины секционируют с помощью секционных выключателей и на каждую пару секций предусматривают свой шиносоединительный выключатель. Обе системы шин используются постоянно как рабочие, что повышает надежность электроустановки. Шиносоединительные выключатели нормально замкнуты. Присоединения с источниками и нагрузкой распределяются между обеими системами шин.

Оперативные переключения в схемах этого типа производятся с участием разъединителей, в результате чего возрастает вероятность ошибочных операций с тяжелыми последствиями. Поэтому следует особое внимание уделять порядку совершения операций при оперативных переключениях.

Принцип перевода присоединений с одной системы шин на другую показан на схеме, изображенной на рис. 1.10.

Рис. 1.10. Перевод присоединений с системы шин А1 на систему шин А2:

а) до перевода, б) после перевода

Пусть начальное состояние схемы таково:

Все присоединения подключены к шине А1;

Шиносоединительный выключатель QA отключен и шина А2 обесточена. Для перевода присоединения на шину А2 выполняются следующие операции.

1. На выключателе QA устанавливают защиту на мгновенное отключение.

2. Осматривают систему шин А2, проверяя отсутствие контакта шины с землей.

3. Проверяют отключенное положение всех шинных разъединителей шины А2.

4. Включают разъединители шиносоединительного выключателя, если они отключены.

5. Подают напряжение на систему шин А2 включением шиносоединительного выключателя.

6. Проверяют приборами наличие напряжения на шине А2 и отсоединяют оперативный ток, отключая защиту шиносоединительного выключателя (эта операция необходима для создания жесткой связи между шинами во время операций с разъединителями).

7. Включают шинные разъединители шины А2 переводимых присоединений, а затем отключают соответствующие шинные разъединители шины А1.

8. Отключают при необходимости шиносоединительный выключатель, восстанавливают его релейную защиту.

Для исключения ошибочных операций с разъединителями на их приводах устанавливают блокирующие устройства. Одна блокировка устанавливается между шинными разъединителями присоединений и выключателем QA, а другая - между выключателем и разъединителями в пределах каждого присоединения.

Достоинства схем с двойной системой шин:

Возможность ремонта сборных шин без погашения присоединений;

Быстрое восстановление питания присоединений при повреждении на сборной шине (в данном случае питание присоединений теряется только на время проведения оперативным персоналом соответствующих переключений);

Возможность деления системы на части для повышения надежности электроснабжения или уменьшения токов КЗ;

Возможность перевода присоединений с одной системы шин на другую без их отключения.

Недостатки схем с двойной системой шин:

Использование шинных разъединителей в качестве оперативных элементов уменьшает надежность схемы из-за возможных ошибочных действий персонала;

Ремонт выключателей и линейных разъединителей связан с отключением присоединений или перерывом в его питании, если на ремонтируемый элемент ставится запетление;

При отказе шиносоединительного выключателя погашаются обе системы шин.

Область применения.

Схемы с двумя системами сборных шин применяются при большом числе присоединений на секции (более 6 - 8). Их применение особенно оправдано в тех случаях, когда потребители питаются по нерезервируемым линиям. В настоящее время область использования РУ с двумя системами шин резко уменьшилась. Они применяются в основном на станциях и подстанциях при напряжениях 110-220 кВ и большом числе присоединений. Реже эти схемы используются в РУ 6-10 кВ, предпочтение отдают одной секционированной системе сборных шин.

Отключение линейного выключателя с запетлением. Во всех РУ (при отсутствии обходных шин) для ремонта линейного выключателя применяют запетление, т.е. шунтирование этого выключателя временной перемычкой с использованием шиносоединительного выключателя в качестве линейного (рис. 1.11). Стрелками показан путь тока после запетления. На запетление требуется 1-2 ч, после чего питание потребителя восстанавливается.

Особенностью схемы является секционирование сборных шин и использование шинных разъединителей 2 в качестве оперативных аппаратов. Схема предусматривает вывод в ремонт любого выключателя присоединения ВЛ и трансформаторов за счет существования обходной системы шин (ОСШ) и выключателя обходной системы шин (ОВ). К сборным шинам 11 подключены измерительные трансформаторы напряжения 6, показанные на рис. 8.1.

В дальнейшем, на последующих схемах заполнения, измерительные трансформаторы напряжения 6 могут не показываться, хотя составляют необходимую принадлежность распределительного устройства. Аналогичные изменения произошли и в системе высокочастотной блокировки (ВЧ) в фазах линий 110-750 кВ: ВЧ блокировка показана не на всех схемах заполнения, хотя составляет необходимую принадлежность ВЛ.

Рис. 8.1. Двойная секционированная система сборных шин с обходной сборной шиной

Расширение схемы возможно за счет увеличения числа ячеек. Отмечаются трудности в осуществлении блокировок от неправильных действий с шинными разъединителями 2.

Данная схема получила широкое распространение в главных схемах электрических станций благодаря хорошему показателю n на присоединение. Широко используется и для современных станций с агрегатами большой мощности – в качестве ОРУ-СН при напряжениях 500/220 кВ и 330/110 кВ и 220/110 кВ.

Применительно к схеме заполнения рис. 8.1 определяем число выключателей на одно присоединение:

n = выключателей на присоединение.

Столь значительное повышение показателя n над значением 1,0 объясняется установкой дополнительных выключателей: секционного (С), шиносоединительного (ШСВ) и обходного (ОВ) на каждой из систем шин. При большем числе присоединений n будет стремиться к 1,0. Эти схемы широко используются в традиционной энергетике при использовании воздушных и масляных выключателей.

Появление блоков большой мощности (блоков на СКД мощностью 300, 500 и 800 МВт, блоков АЭС с реакторами 1000 и 1200 МВт, гидростанций с агрегатами мощностью до 640 МВт) потребовало изменить подход к главным схемам электрических соединений. Снизить габариты распределительных устройств, произвести замену выключателей воздушного типа и масляных на более совершенные элегазовые выключатели и перейти к созданию комплектных распределительных устройств с элегазовой изоляцией (КРУЭ). Учитывая высокую надежность элегазовых распределительных устройств, последние выполняются по упрощенным главным схемам, то есть с отказом от обходной системы шин (ОСШ), от секционирования сборных шин и от выключателей обходной системы шин.

Двойная система сборных шин с обходной системой сборных шин применяется на напряжениях 110-220 кВ при необходимости ремонта выключателей и сборных шин без перерыва питания присоединений.

Кольцевые схемы

Пример кольцевой схемы на рис. 8.2 изображен по данным работ ОАО «Ленгидропроект», которое является генеральным проектировщиком Бурейской ГЭС, расположенной в Амурской области на р. Бурее. На ГЭС установлены шесть гидрогенераторов мощностью 335 МВт, работающих через повышающие трансформаторы на распределительные устройства 220 и 500 кВ.

Рис. 8.2. Главная схема Бурейской ГЭС

Первый и второй генераторы выдают мощность в систему 220 кВ по двум высоковольтным линиям через РУ, построенное по схеме «двойная система сборных шин с обходной системой шин».

Остальные четыре генератора в составе двух сдвоенных блоков работают на сеть 500 кВ, связь с которой осуществляется по трем ВЛ-500 кВ с глухим присоединением шунтирующих реакторов.

Распределительное устройство 500 кВ построено по схеме «шестиугольник» с однорядной установкой выключателей. При «шестиугольнике», и при ином числе углов (треугольник, четырехугольник, пятиугольник) обеспечивается возможное наименьшее число выключателей. Особенностями схемы 500 кВ являются: избирательное отключение при повреждении на присоединении и необходимость держать «шестиугольник» замкнутым, что осуществляется за счет наличия выходного разъединителя присоединения.

Распределительное устройство 500 кВ выполнено в виде КРУЭ производства концерна «АВВ» (Швейцария). Впервые в отечественной практике применено элегазовое распределительное устройство вместо первоначально предусмотренного ОРУ-500 кВ по схеме 3/2.

С распредустройством 500 кВ два укрупненных блока связаны высоковольтными кабелями 500 кВ с изоляцией из сшитого полиэтилена взамен воздушных переходов с прокладкой его в кабельном туннеле в шахте, запроектированных ранее для связи распределительных устройств 220 и 500 кВ со зданием ГЭС. Выполнение этих переходов по первоначальной проектной схеме мешало ходу строительных работ. В результате ввод блоков 500 кВ по первоначальной проектной схеме мог быть осуществлен только после возведения постоянных напорных водоводов и завершения работ по плотине. В отечественной практике применение кабеля 500 кВ с сухой изоляцией осуществлено впервые .

Распредустройства 220 и 500 кВ связаны через группу однофазных автотрансформаторов 167 МВА на фазу.

Показатель n = 1,0 независимо от числа углов многоугольника.


В устройствах рассматриваемого вида (рис. 5.1, а ) каждое присоединение

содержит в общем случае выключатель и два разъединителя - шинный и

линейный. Выключатели, как известно, служат для неавтоматического и автомати-

ческого отключения и включения присоединений. Разъединители необходимы для

изоляций аппаратов и присоединений на время их ремонта от смежных частей

системы, находящихся под напряжением.

Рис.5.1. Принципиальная схема РУ с одной системой сборных шин.

а - шины не секционированы; б - секционированные шины; в - секционированные шины и

обходное устройство.

Термин «изоляция» следует понимать как создание видимого разрыва цепи в

воздухе, обеспечивающего безопасность для людей. Так, например, при ремонте

выключателя какого-либо присоединения он должен быть изолирован от сбор-

ных шин и от сети, поскольку линия, отключенная со стороны источника энергии,

может оставаться включенной с противоположного конца. Только в частных

случаях, когда возможность подачи напряжения с противоположного конца

исключена, линейные разъединители могут отсутствовать. Это относится, на-

пример, к присоединениям двухобмоточных трансформаторов, поскольку ремонт

выключателя производится при отключенном трансформаторе со стороны

высшего и низшего напряжения. В присоединениях генераторов линейные

разъединители также обычно не предусматриваются.

В рассматриваемой схеме операции с разъединителями допускаются только

при отключенном выключателе соответствующего присоединения. Ясность этого

требования и простота РУ практически исключают ошибочные операции с

разъединителями. Тем не менее предусматриваются блокирующие устройства,

препятствующие неправильным операциям.

Достоинство рассматриваемой схемы с одной системой сборных шин

заключается в ее исключительной простоте и, следовательно, низкой стоимости.

Недостатки ее следующие:

Профилактический ремонт сборных шин и шинных разъединителей связан

с отключением всего устройства на время ремонта;

Ремонт выключателей и линейных разъединителей связан с отключением

соответствующих присоединений, что нежелательно, а в некоторых случаях

недопустимо;

Короткое замыкание в зоне сборных шин приводит к полному отключению

То же самое имеет место в случае внешнего замыкания и отказа

выключателя соответствующего присоединения.

Перечисленные недостатки могут быть частично устранены с помощью

указанных ниже дополнительных устройств. Приведенные затраты при этом

увеличиваются.Чтобы избежать полного отключения РУ при замыкании в зоне

сборных шин и обеспечить возможность их ремонта по частям, прибегают к

секционированию сборных шин, т. е. разделению их на части - секции с

установкой в точках деления выключателей, нормально замкнутых или нормально

разомкнутых, в зависимости, от преследуемой цели. Эти выключатели называют

секционными. Относительно редко встречаются устройства, сборные шины

которых секционированы через разъединители, замкнутые или разомкнутые при

нормальной работе. Секционирование должно быть выполнено так, чтобы каждая

секция имела источники энергии (генераторы, трансформаторы) и соответствую-

щую нагрузку (рис. 5.1,6 ). Присоединения распределяют между секциями с таким

расчетом, чтобы вынужденное отключение одной секции по возможности не

нарушало работы системы и электроснабжения потребителей. Число секций

зависит от числа и мощности источников энергии, напряжения, схемы сети и

режима установки. В РУ с большим числом секций сборные шины замыкают в

На станциях секционные выключатели при нормальной работе, как правило,

замкнуты, поскольку генераторы должны работать параллельно. В случае к.з. в

зоне сборных шин поврежденная секция отключается автоматически. Остальные

секции остаются в работе. Таким образом, секционирование через нормально

замкнутые выключатели способствует повышению надежности РУ и

электроустановки в целом. Заметим, однако, что в случае замыкания в секционном

выключателе отключению подлежат две смежные секции, следовательно, в

устройствах с двумя секциями полное отключение не исключено, хотя

вероятность его относительно мала.

В РУ низшего напряжения 6-10 кВ подстанций секционные выключатели,

как правило, разомкнуты в целях ограничения тока к.з. Выключатели снабжают

устройствами автоматического включения резервного питания (АВР), замы-

кающими выключатели в случае отключения трансформатора, чтобы не нарушать

электроснабжения потребителей.

Чтобы обеспечить возможность поочередного ремонта выключателей, не

нарушая работы соответствующих цепей, предусматривают (преимущественно в

РУ 110-220 кВ) обходные выключатели и обходную систему шин с соответст-

вующими разъединителями в каждом присоединении (рис. 5.1, в). При

нормальной работе установки обходные разъединители и обходные выключатели

отключены. Замена рабочего выключателя обходным производится в следующем

порядке: включают обходный выключатель, чтобы убедиться в исправности

обходной системы; отключают обходный выключатель; включают обходный

разъединитель ремонтируемого присоединения; вновь включают обходный

выключатель; отключают выключатель, подлежащий ремонту, и соответствующие

разъединители. Защита цепи во время ремонта осуществляется обходным

выключателем, снабженным соответствующим комплектом релейной защиты.

В устройствах с секционированными сборными шинами и обходной

системой шин (рис. 5.1, в ), строго говоря, необходимы два обходных

выключателя. Однако в целях экономии средств часто ограничиваются одним

выключателем с двумя шинными разъединителями, с помощью которых

обходный выключатель может быть присоединен к той или другой секции

сборных шин.

Распределительные устройства с одной секционированной системой

сборных шин получили применение на станциях и подстанциях при номинальных

напряжениях до 220 кВ включительно. Основным условием применения этой

схемы является наличие достаточного резерва в источниках энергии и линиях и,

следовательно, возможность кратковременного отключения одной из секций без

нарушения работы электроустановки в целом. Аналогичные устройства, но с об-

ходной системой шин, применяют при ограниченном числе присоединений в

качестве устройств среднего напряжения 110-220 кВ станций и подстанций.__