Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм (см. рис.1.1). Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива.

Рисунок 1.1 – Влияние солнечного излучения на Землю

Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество. Основным источником энергии практически всех природных процессов, происходящих на поверхности Земли и в атмосфере, является энергия, поступающая на Землю от Солнца в виде солнечной радиации.

На рисунке 1.2 представлена классификационная схема, которая отражает процессы, возникающие на поверхности Земли и в ее атмосфере под действием солнечного излучения.

Результатами прямой солнечной деятельности являются тепловой эффект и фотоэффект, вследствие чего Земля получает тепловую энергию и свет. Результатами косвенной деятельности Солнца являются соответствующие эффекты в атмосфере, гидросфере и геосфере, служащие причиной появления ветра, волн, обуславливающие течение рек, создающие условия для сохранения внутреннего тепла Земли.

Рисунок 1.2 - Классификация возобновляемых источников энергии

Солнце представляет собой газовый шар радиусом 695300 км, в 109 раз больше радиуса Земли, с температурой излучающей поверхности около 6000°С. Внутри Солнца температура достигает 40 млн °С.

На рисунке 1.3 приведена схема строения Солнца. Солнце - гигантский "термоядерный реактор", работающий на водороде и ежесекундно путем плавления перерабатывающий 564 млн. тонн водорода в 560 млн. тонн гелия. Потеря четырех миллионов тонн массы равна 9:1-10 9 ГВтч энергии (1 ГВт равен 1 млн. кВт). За одну секунду энергии производится больше, чем шесть миллиардов АЭС смогли бы произвести за год. Благодаря защитной оболочке атмосферы только часть этой энергии достигает поверхности Земли.

Расстояние между центрами Земли и Солнца равно в среднем 1,496*10 8 км.

Ежегодно Солнце посылает к Земле около 1,610 18 кВтч лучистой энергии или 1,3*10 24 кал тепла. Это в 20 тыс. раз больше современного мирового энергопотребления. Вклад Солнца в энергетический баланс земного шара в 5000 раз превышает суммарный вклад всех других источников.

Такого количества тепла хватило бы, чтобы растопить слой льда толщиной 35 м, покрывающий земную поверхность при 0°С.

В сравнении с солнечной радиацией все остальные источники энергии, поступающей на Землю, ничтожно малы. Так, энергия звезд составляет одну стомиллионную часть солнечной энергии; космическое излучение - две миллиардные доли. Внутреннее тепло, поступающее из глубины Земли на ее поверхность составляет одну десятитысячную часть солнечной энергии.

Рисунок 1.3 – Схема строения Солнца

Таким образом. Солнце является фактически единственным источником тепловой энергии на Земле.

В центре Солнца находится солнечное ядро (см. рис. 1.4). Фотосфера - это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только в периоды полного солнечного затмения.

Видимая поверхность Солнца, излучающая радиацию называется фотосферой (сфера света). Она состоит из раскаленных паров различных химических элементов, находящихся в ионизированном состоянии.

Над фотосферой находится светящаяся практически прозрачная атмосфера Солнца, состоящая из разряженных газов, которая называется хромосферой.

Над хромосферой располагается внешняя оболочка Солнца, называемая короной.

Газы, образующие Солнце, находятся в состоянии непрерывного бурного (интенсивного) движения, что обусловливает появление так называемых солнечных пятен, факелов и протуберанцев.

Солнечные пятна представляют собой большие воронки, образовавшиеся в результате вихревых движений масс газа, скорость которых достигает 1-2 км/с. Температура пятен на 1500°С ниже температуры Солнца и составляет около 4500°С. Количество солнечных пятен изменяется из года в год с периодом около 11 лет.

Рисунок 1.4 - Строение Солнца

Солнечные факелы это выбросы солнечной энергии, а протуберанцы - колоссальной силы взрывы в хромосфере Солнца, достигающие высоты до 2 млн. км.

Наблюдения показали, что с увеличением количества солнечных пятен увеличивается количество факелов и протуберанцев и соответственно увеличивается солнечная активность.

С увеличением солнечной активности на Земле происходят магнитные бури, которые оказывают отрицательное воздействие на телефонную, телеграфную и радиосвязь, а также на условия жизнедеятельности. С этим же явлением связано увеличение полярных сияний.

Следует отметить, что в период увеличения солнечных пятен, интенсивность солнечной радиации сначала увеличивается, что связано с общим увеличением солнечной активности в начальный период, а затем солнечное излучение уменьшается, так как увеличивается площадь солнечных пятен, имеющих температуру на 1500° ниже температуры фотосферы.

Часть метеорологии, изучающая влияние солнечной радиациина Земле и в атмосфере, называется актинометрией.

При актинометрических работах необходимо знать положение Солнца на небесном своде. Это положение определяется высотой или азимутом Солнца.

Высотой Солнца he называется угловое расстояние от Солнца до горизонта, то есть угол между направлением на Солнце и плоскостью горизонта.

Угловое расстояние Солнца от зенита, то есть от его вертикального направления называется азимутом или зенитным расстоянием.

Между высотой и зенитным расстоянием существует соотношение

(1.1)

Азимут Солнца определяется редко, только для специальных paбот.

Высота Солнца над горизонтом определяется по формуле:

где - широта места наблюдений;

- склонение Солнца - это дуга круга склонений от экватора до Солнца, которая отсчитывается в зависимости от положения Солнца в обе стороны от экватора от 0 до ±90°;

t - часовой угол Солнца или истинное солнечное время в градусах.

Величина склонения Солнца на каждый день приводится в астрономических справочниках за многолетний период.

По формуле (1.2) можно вычислить для любого времени t высоту Солнца he или по заданной высоте hc определить время, когда Солнце бывает на данной высоте.

Максимальная высота Солнца в полдень для различных дней года вычисляется по формуле:

(1.3)



Добавить свою цену в базу

Комментарий

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Что такое Солнце? В масштабах видимой Вселенной это – всего лишь крошечная звезда на окраине галактики, которая носит название Млечный Путь. Но для планеты Земля Солнце – не просто раскаленный сгусток газа, а источник тепла и света, необходимый для существования всего живого.

С доисторических времен дневное светило было объектом поклонения, его движение по небесной тверди ассоциировалось с проявлением божественных сил. Исследования Солнца и его излучения начались еще до принятия гелиоцентрической модели Николая Коперника, над его загадками ломали головы величайшие умы древних цивилизаций.

Технический прогресс подарил человечеству возможность изучить не только процессы внутри и на поверхности Солнца, но и изменения земного климата под его воздействием. Статистические данные позволяют дать четкий ответ на вопрос, что такое солнечная радиация, в чем она измеряется и определить ее влияние на живые организмы, населяющие планету.

Что называют солнечной радиацией

Природа солнечного излучения оставалась неясной до тех пор, пока в начале ХХ века выдающийся астроном Артур Эддингтон не предположил, что источником колоссальной солнечной энергии являются реакции термоядерного синтеза, которые происходят в его недрах. Температура вблизи его ядра (около 15 млн градусов) является достаточной для того, чтобы протоны преодолевали силу взаимного отталкивания и в результате столкновения образовывали ядра Гелия.

Впоследствии ученые (в частности – Альберт Эйнштейн) обнаружили, что масса ядра Гелия несколько меньше суммарной массы четырех протонов, из которых оно образуется. Этот феномен получил название дефекта масс. Проследив взаимосвязь массы и энергии, ученые обнаружили, что этот излишек выделяется в виде гамма-квантов.

При прохождении пути от ядра к поверхности Солнца через слои составляющих его газов, гамма-кванты дробятся и превращаются в электромагнитные волны, среди которых находится и видимый человеческому глазу свет. Этот процесс занимает около 10 млн лет. А для достижения солнечного излучения земной поверхности требуется всего 8 минут.

Солнечная радиация включает в себя электромагнитные волны с широким диапазоном и солнечный ветер, который представляет собою поток лёгких частиц и электронов.

Какие существуют виды солнечного излучения и его характеристики

На границе атмосферы Земли интенсивность солнечного излучения – постоянная величина. Энергия Солнца дискретна и переносится порциями (квантами) энергии, но их корпускулярный вклад относительно мал, поэтому солнечные лучи рассматриваются как электромагнитные волны, которые распространяются равномерно и прямолинейно.

Основной волновой характеристикой является длина волны, с помощью которой выделяют виды излучения:

  • радиоволны;
  • инфракрасное (тепловое);
  • видимый (белый) свет;
  • ультрафиолетовое;
  • гамма-лучи.

Солнечная радиация представлена инфракрасным (ИК), видимым (ВС) и ультрафиолетовым (УФ) излучением в соотношении 52%, 43% и 5% соответственно. Количественной мерой излучения Солнца считается энергетическая освещенность (плотность энергетического потока) – лучистая энергия, поступающая в единицу времени на единицу поверхности.

Распределение солнечной радиации по земной поверхности

Большая часть излучения поглощается атмосферой земли и нагревает ее до привычной для живых организмов температуры. Озоновый слой пропускает всего 1% ультрафиолетовых лучей и служит щитом от более агрессивного коротковолнового излучения.

Атмосфера поглощает около 20 % солнечных лучей, 30% рассеивает в разные стороны. Таким образом, на земную поверхность попадает только половина лучистой энергии, названная прямой солнечной радиацией.

На интенсивность прямого солнечного излучения влияет несколько факторов:

  • угол падения солнечных лучей (географическая широта);
  • расстояние от точки падения до Солнца (время года);
  • характер отражающей поверхности;
  • прозрачность атмосферы (облачность, загрязненность).

Рассеянное и прямое излучение составляют суммарную солнечную радиацию, интенсивность которой измеряется в калориях на единицу поверхности. Понятно, что солнечная радиация оказывает влияние только в дневное время суток и распределяется по земной поверхности неравномерно. Ее интенсивность увеличивает по мере приближения к полюсам, однако снега отражают большую долю лучистой энергии, в результате чего воздух не нагревается. Поэтому суммарный показатель уменьшается по мере отдаления от экватора.

Солнечная активность формирует климат Земли и воздействует на процессы жизнедеятельности организмов, которые ее населяют. На территории стран СНГ (в северном полушарии) в зимнее время года преобладает рассеянное излучение, в летнее – прямое.

Инфракрасное излучение и его роль в жизни человечества

Солнечная радиация представлена преимущественно , невидимым человеческому глазу. Именно оно нагревает земную почву, которая впоследствии отдает тепло атмосфере. Таким образом, поддерживается оптимальная для жизни на Земле температура и привычные климатические условия.

Кроме Солнца источниками инфракрасного излучения являются все нагретые тела. По этому принципу работают все нагревательные приборы и устройства, которые позволяют разглядеть более или менее нагретые предметы в условиях плохой видимости.

То, что человек не в состоянии воспринимать инфракрасный свет, не уменьшает его влияния на организм. Этот вид излучения нашел применение в медицине благодаря таким свойствам:

  • расширение кровеносных сосудов, нормализация кровотока;
  • увеличение количества лейкоцитов;
  • лечение хронических и острых воспалений внутренних органов;
  • профилактика кожных заболеваний;
  • удаление коллоидных рубцов, лечение незаживающих ранений.

Инфракрасные термографы позволяют вовремя выявить заболевания, не поддающиеся диагностике с помощью других методов (тромбы, раковые опухоли и т.д.). Инфракрасное излучение является своеобразным «противоядием» от негативного ультрафиолета, поэтому его целительные свойства применяются для восстановления здоровья людей, длительное время пребывавших в космическом пространстве.

Механизм воздействия инфракрасных лучей полностью не изучен и, как и любой вид радиации, при неграмотном использовании может нанести вред здоровью человека. Противопоказано лечение с помощью ИК-лучей при наличии гнойных воспалений, кровотечений, злокачественных опухолей, недостаточности мозгового кровообращения и сердечно-сосудистой системы.

Спектральный состав и свойства видимого света

Световые пучки распространяются прямолинейно и не накладываются друг на друга, что порождает справедливый вопрос, почему окружающий мир поражает многообразием различных оттенков. Секрет заключается в основных свойствах света: отражении, преломлении и поглощении.

Доподлинно известно, что предметы не испускают свет, он частично поглощается ими и отражается под разным углом в зависимости от частоты. Человеческое зрение эволюционировало веками, однако сетчатка глаза способна воспринимать только ограниченный диапазон отраженного света в узком промежутке между инфракрасным и ультрафиолетовым излучением.

Изучение свойств света породило не только отдельную отрасль физики, но и ряд ненаучных теорий и практик, основанных на влиянии цвета на психическое и физическое состояние индивидуума. Оперируя этими знаниями, человек оформляет окружающее пространство в наиболее приятном для глаз цвете, что делает быт максимально комфортным.

Ультрафиолетовое излучение и его влияние на организм человека

Ультрафиолетовый спектр солнечного света состоит из длинных, средних и коротких волн, которые отличаются физическими свойствами и характером воздействия на живые организмы. Ультрафиолетовые лучи, которые относятся к длинноволновому спектру, преимущественно рассеиваются в атмосфере и не достигают поверхности земли. Чем меньше длина волны, тем глубже проникает ультрафиолет в кожные покровы.

Ультрафиолетовое излучение необходимо для поддержания жизни на Земле. На организм человека УФ-лучи оказывают следующее влияние:

  • насыщение витамином D, необходимым для формирования костной ткани;
  • профилактика остеохондроза и рахита у детей;
  • нормализация обменных процессов и синтеза полезных ферментов;
  • активация регенерации тканей;
  • улучшение кровообращения, расширение сосудов;
  • повышение иммунитета;
  • снятие нервного возбуждения за счет стимуляции выработки эндорфинов.

Несмотря на объемный перечень положительных качеств, солнечные ванны не всегда эффективны. Длительное пребывание на солнце в неблагоприятное время или в периоды аномально высокой солнечной активности сводит на нет полезные свойства УФ-лучей.

Ультрафиолетовое облучение в больших дозах имеет результат прямо противоположный ожидаемому:

  • эритему (покраснение кожи) и солнечные ожоги;
  • гиперемию, отечность;
  • повышение температуры тела;
  • головные боли;
  • нарушение функций иммунной и центральной нервной систем;
  • снижение аппетита, тошнота, рвота.

Эти признаки являются симптомами солнечного удара, при котором ухудшение состояния человека может происходить незаметно. Порядок действий при солнечном ударе:

  • переместить человека из зоны воздействия прямых солнечных лучей в прохладное место;
  • положить на спину и поднять ноги на возвышение, чтобы нормализовать кровообращение;
  • ополоснуть лицо и шею прохладной водой, желательно сделать компресс на лоб;
  • обеспечить возможность свободно дышать и избавить от тесной одежды;
  • в течение получаса дать напиться небольшим количеством чистой холодной воды.

В тяжелых случаях при потере сознания необходимо вызвать бригаду скорой помощи и по возможности привести пострадавшего в чувство. Медицинская помощь больному заключается в экстренном введении глюкозы или аскорбиновой кислоты внутривенно.

Правила безопасного загара

УФ-лучи стимулируют синтез особого гормона меланина, с помощью которого кожа человека темнеет и принимает бронзовый оттенок. Споры о пользе и вреде загара ведутся не одно десятилетие.

Доказано, что загар – это защитная реакция организма на облучение ультрафиолетом, а чрезмерное увлечения солнечными ваннами увеличивает риск возникновения злокачественных образований.

Если желание отдать дань моде преобладает, необходимо понимать, что такое солнечная радиация, как от нее защититься и следовать простым рекомендациям:

  • загорать постепенно исключительно в утреннее или вечернее время;
  • не находиться под прямыми солнечными лучами более часа;
  • наносить на кожу защитные средства;
  • пить больше чистой воды, чтобы избежать обезвоживания;
  • включить в рацион продукты, в которых содержится витамин Е, бета-каротин, тирозин и селен;
  • ограничить употребление алкогольных напитков.

Реакция организма на облучение ультрафиолетом индивидуальна, поэтому время для солнечных ванн и их длительность должны подбираться с учетом типа кожи и состояния здоровья человека.

Крайне противопоказан загар беременным, пожилым, людям с заболеваниями кожи, сердечной недостаточностью, психическими расстройствами и при наличии злокачественных образований.

Дажьбог у славян, Апполон у древних греков, Митра у индоиранцев, Амон Ра у древних египтян, Тонатиу у ацтеков – этими именами в древнем пантеизме люди называли Бога-Солнце.

С древних времен люди понимали, какое большое значение для жизни на Земле имеет Солнце, и обожествляли его.

Светимость Солнца огромная и составляет 3,85х10 23 кВт. Солнечная энергия, воздействующая на площадь всего в 1 м 2 способна зарядить двигатель в 1,4 кВт.

Источником энергии является термоядерная реакция, проходящая в ядре звезды.

Образующийся при этом 4 He составляет, без малого (0,01%) весь гелий земли.

Звезда нашей системы испускает электромагнитное и корпускулярное излучение. С внешней стороны короны Солнца в космическое пространство «дует» солнечный ветер, состоящий из протонов, электронов и α-частиц. С солнечным ветром теряется ежегодно 2-3х10 -14 массы светила. С корпускулярным излучением связаны магнитные бури и полярное сияние.

Электромагнитное излучение (солнечная радиация) достигает поверхности нашей планеты в виде прямых и рассеянных лучей. Спектральный диапазон его составляют:

  • ультрафиолетовое излучение;
  • рентгеновские лучи;
  • γ-лучи.

На коротковолновую часть приходится всего 7% энергии. Видимый свет составляет 48% энергии радиации Солнца. В основном он составлен сине-зеленым спектром излучения, 45% составляет инфракрасное излучение и только незначительная часть представлена радиоизлучением.

Ультрафиолетовое излучение, в зависимости от длины волны, подразделяют на:

Большая часть ультрафиолетового излучения с большой длиной волны достигает поверхности земли. Количества дошедшей до поверхности планеты УФ-В энергии зависит от состояния озонового слоя. УФ-С почти полностью поглощается озоновым слоем и газами атмосферы. Еще в 1994 г. ВОЗ и ВМО предложили ввести индекс ультрафиолета (UV, Вт/м 2).

Видимая часть света и не поглощается атмосферой, но волны некоторого спектра рассеиваются. Инфракрасный цвет или тепловая энергия в средневолновом диапазоне, в основном, поглощается водяным паром и углекислым газом. Источником длинноволнового спектра является земная поверхность.

Все перечисленные выше диапазоны имеют огромное значение для жизни на Земле. Значительная часть солнечной радиации не попадает на поверхность Земли. У поверхности планеты регистрируется следующие виды излучения:

  • 1% ультрафиолетового;
  • 40% оптического;
  • 59% инфракрасного.

Виды излучений

Интенсивность солнечной радиации зависит от:

  • широты;
  • сезона;
  • времени суток;
  • состояния атмосферы;
  • особенностей и рельефа земной поверхности.

В разных точках Земли солнечная радиация по-разному влияет на живые организмы.

Фотобиологические процессы, протекающие под действием энергии света, в зависимости от их роли, можно подразделить на следующие группы:

  • синтез биологически активных веществ (фотосинтез);
  • фотобиологические процессы, помогающие ориентироваться в пространстве и помогающие получить информацию (фототаксис, зрение, фотопериодизм);
  • повреждающее воздействие (мутации, канцерогенные процессы, деструктивное воздействие на биоактивные вещества).

Расчет инсоляции

Световое излучение оказывает стимулирующий эффект на фотобиологические процессы в организме – синтез витаминов, пигментов, клеточная фотостимуляция. В настоящее время изучается сенсибилизирующее влияние солнечного света.

Ультрафиолетовое излучение, воздействуя на кожные покровы человеческого тела, стимулирует синтез витаминов D, В4 и белков, являющихся регуляторами многих физиологических процессов. Ультрафиолетовое излучение оказывает воздействие на:

  • обменные процессы;
  • иммунную систему;
  • нервную систему;
  • эндокринную систему.

Сенсибилизирующее влияние ультрафиолета зависит от длины волны:

Стимулирующее действие солнечных лучей выражается в повышении специфического и неспецифического иммунитета. Так, например, у детей, которые подвергаются умеренному природному УФ облучению, количество простудных заболеваний снижается на 1/3. При этом эффективность лечения повышается, отсутствуют осложнения, сокращается период заболевания.

Бактерицидные свойства коротковолнового спектра УФ излучения применяются в медицине, пищевой промышленности, фармацевтическом производстве для обеззараживания сред, воздуха и продукции. Ультрафиолетовое излучение уничтожает туберкулезную палочку в течение нескольких минут, стафилококк – за 25 минут, а возбудителя брюшного тифа – за 60 мин.

Неспецифический иммунитет, в ответ на ультрафиолетовое облучение, отвечает увеличением титров комплимента и агглютинации, повышением активности фагоцитов. Но повышенное УФ-облучение вызывает патологические изменения в организме:

  • рак кожи;
  • солнечную эритему;
  • повреждение иммунной системы, которое выражается в появлении веснушек, невусов, солнечных лентиго.

Видимая часть солнечного света:

  • дает возможность получения 80% информации с помощью зрительного анализатора;
  • ускоряет обменные процессы;
  • улучшает настроение и общее самочувствие;
  • согревает;
  • влияет на состояние ЦНС;
  • определяет суточные ритмы.

Степень воздействия инфракрасного излучения зависит от длины волны:

  • длинноволновое – обладает слабой проникающей способностью и в значительной степени поглощается поверхностью кожи, вызывая эритему;
  • коротковолновое – проникает вглубь организма, оказывая сосудорасширяющее действие, болеутоляющее, противовоспалительное.

Кроме воздействия на живые организмы, солнечная радиация имеет большое значение в формировании климата Земли.

Значение солнечной радиации для климата

Солнце является главным источником тепла, формирующим земной климат. На ранних этапах развития Земли Солнце излучало на 30% меньше тепла, чем сейчас. Но благодаря насыщению атмосферы газами и вулканической пылью климат на Земле был влажный и теплый.


В интенсивности инсоляции отмечается цикличность, которая обуславливает потепление и похолодание климата. Цикличностью объясняется малый ледниковый период, наступивший в XIV-XIX вв. и потепление климата, наблюдавшееся в период 1900-1950 гг.

В истории планеты отмечается периодичность изменения наклона оси и экстреситет орбиты, что изменяет перераспределение солнечной радиации на поверхности и влияет на климат. Так, например, эти изменения отражаются на увеличении и уменьшении площади пустыни Сахары.

Межледниковые периоды длятся около 10000 лет. Сейчас Земля находится в межледниковом периоде, который называется гелиоценом. Благодаря ранней сельскохозяйственной деятельности человека этот период длиться дольше, чем рассчитано.

Учеными описаны 35-45 летние циклы изменения климата, во время которых сухой и теплый климат меняется на прохладный и влажный. Они влияют на наполнение внутренних водоемов, уровень Мирового океана, изменение оледенения в Арктике.


Солнечная радиация по-разному распределяется. Так, например, в средних широтах в период с 1984 по 2008 год отмечалось увеличение суммарной и прямой солнечной радиации и уменьшение рассеянной. Изменение интенсивности отмечается и в течение года. Так, пик приходится на май-август, а минимум – на зимний период.

Так как высота Солнца и продолжительность светового дня в летнее время больше, то на этот период приходится до 50% суммарной годовой радиации. А в период с ноября по февраль – всего 5%.

Количество солнечной радиации, попадающей на определенную поверхность Земли, влияет на важные климатические показатели:

  • температуру;
  • влажность;
  • атмосферное давление;
  • облачность;
  • осадки;
  • скорость ветра.

Увеличение солнечной радиации увеличивает температуру и атмосферное давление, остальные характеристики находятся в обратном отношении. Ученые выяснили, что наибольшее влияние на климат оказывают уровни суммарной и прямой радиации Солнца.

Меры защиты от солнечного излучения

Сенсибилизирующее и повреждающее воздействие на человека солнечная радиация проявляет в виде теплового и солнечного удара, негативного воздействия излучения на кожу. Сейчас большое количество знаменитостей присоединились к движению против загара.

Анжелина Джоли, например, говорит, что ради двух недель загара она не хочет жертвовать несколькими годами жизни.

Чтобы защититься от солнечной радиации, необходимо:

  1. загорать в утренние и вечерние часы – самое безопасное время;
  2. пользоваться солнцезащитными очками;
  3. в период активного солнца:
  • покрывать голову и открытые участки тела;
  • использовать солнцезащитный крем с УФ-фильтром;
  • приобрести специальную одежду;
  • защищать себя с помощью широкополой шляпы или зонта от солнца;
  • соблюдать питьевой режим;
  • избегать интенсивных физических нагрузок.

При разумном использовании, солнечная радиация оказывает благотворное влияние на организм человека.