В списке материалов для мягкой кровли солидное место занимают полимерные мембраны. Чаще всего их применяют для обустройства масштабных плоских крыш над промышленными, торговыми и спортивными центрами. Однако и в частном секторе завоевана пусть небольшая, но уверенно расширяющаяся ниша. Активно востребовано покрытие из поливинилхлорида, привлекающее безупречной изоляцией, простотой укладки и обилием колоритных вариантов.

Знание правил, согласно которым производится монтаж мягкой кровли из ПВХ мембраны, обеспечит идеальный результат в самостоятельной работе или поможет проконтролировать действия наемных кровельщиков.

Рулонное кровельное покрытие, созданное из пластифицированного поливинилхлорида, позволяет в сжатые сроки обустраивать крупногабаритные плоские и мало-скатные крыши. Благодаря чему в области индустриального строительства у него практически нет соперников.


Владельцев частных строений впечатляют не столько темпы работ, сколько превосходная гидроизоляция и непреклонное отражение атак атмосферного негатива. Убеждает «равнодушие» к ультрафиолету, обеспеченное введением модифицирующих добавок в формулу материала. Аргументирует износостойкость, потому что полимерные кровли служат в разы дольше, чем морально устаревший предшественник – рубероид.

К губительным климатическим факторам ПВХ-покрытие практически невосприимчиво, но крайне чувствительно к несоблюдению норм укладки. Нарушения технологических правил, учитывающих специфику материала, существенно сокращают «жизненный цикл» покрытия. В результате нередко приходится восстанавливать не только крышу, но и здание в целом.

Структурные особенности полимерного покрытия

Кровельный материал нового поколения структурно все же напоминает рубероидного предка. По аналогии у него есть основа, но место ненадежного кровельного картона заняла не гниющая стеклосетка или полиэфирное полотно. Основа обеспечивает стабильность размеров, препятствует растяжению, появлению складок и провисаний.


С целью использования свойственной полимерам эластичности выпускаются безосновные полимерные мембраны. Требуются они для покрытия суперсложных крыш и для изготовления деталей путем деформации непосредственно на объекте: вогнутых и выпуклых накладок для углов, манжет и раструбов на элементах гидроизоляции кровельных проходок, заплаток.

По тем же причинам стабилизирующей основы изначально нет у заводских фасонных элементов, применяемых для герметизации функциональных составляющих кровельной конструкции.


Двустороннюю битумную оболочку заменили слои пластифицированного полимера, не выдерживающего стандартной для рубероида температуры плавления. О прежних способах укладки рулонов с помощью горелки пришлось забыть и разработать новые методы крепления материала, согласно которым сооружаются:

  • механически зафиксированные мембранные системы;
  • балластные кровли обычного и инверсионного типа;
  • клеевые кровельные системы, в устройстве которых клеевой способ нередко сочетается с механической фиксацией элементов.

Перечисленные системы обозначают метод крепления мембраны к основанию. Между собой полосы рулонного материала свариваются в единое полотно с помощью ручного прибора, автоматического или полуавтоматического оборудования, размягчающего тыльную сторону мембраны горячим воздухом.

Выполненная по правилам сварка превращает мембранную кровлю в монолитный гидроизоляционный ковер, исключающий проникновение атмосферной влаги в кровельный пирог.

От испарений, атакующих кровлю со стороны внутренних помещений здания, мягкие кровли должна защищать пароизоляция.

Правда, в случае перебора давления влаги внутри кровельного пирога ПВХ мембрана может самостоятельно избавляться от разрушающего негатива. Способность пропускать пар наружу, становясь непреодолимой преградой на обратном его пути, признают значимым преимуществом покрытий из поливинилхлорида.

Химические “капризы” ПВХ мембран

Для того чтобы грамотно реализовать монтаж мягкой кровли своими руками или усилиями бригады рабочих, следует выяснить, на какую поверхность можно укладывать полимерную мембрану.

Дело в том, что ПВХ мембранам запрещено напрямую контактировать:

  • с плитами утеплителя из вспененного полиуретана и полистирола, потому что модифицирующие материал пластификаторы могут свободно мигрировать в пористую теплоизоляцию, нанося урон эксплуатационным качествам;
  • с битумной пароизоляцией, мастиками, гидроизоляционными материалами, имеющими в составе нефтепродукты и масла, т.к. они постепенно вымывают упрочняющие добавки;
  • с обработанным пропитками деревянным настилом, медленно, но верно разрушающим покрытие.

Все перечисленные ситуации имеют общие последствия. Утративший пластификаторы поливинилхлорид растрескивается, затем крошится, в итоге покрытие теряет герметичность.

Во имя долгосрочности между мембраной и указанными материалами располагают разделительные прослойки, устраняющие прямой контакт, но не влияющие на технические характеристики кровельного пирога.

В качестве разделителей применяют:

  • геотекстиль плотностью от 140 г/м² и больше;
  • стеклополотно плотностью от 120 г/м² и больше.

Разделительный материал укладывается полосами с нахлестами около 5 см. Сформированные нахлесты свариваются горячим воздухом за один прием. Отметим, что геотекстиль, не прошедший термическую обработку, будет наматываться на саморезы в процессе ввинчивания.

На стеклохолст разрушающее действует цементное молочко, значит, их не следует укладывать рядом. О химической совместимости нельзя забывать, подбирая материал для запланированного обустройства крыши.

Мембранау ПВХ нередко используют в сфере ремонта для восстановления старой битумной кровли. Понятно, что между ней и новым покрытием тоже требуется разделительная прослойка.


В таких случаях настилают термообработанный геотекстиль, потому что он не накручивается на скрепляющие пирог саморезы. Плотность разделяющего материала 300 г/м². Второе важное условие ремонта битумной крыши: восстанавливаемому покрытию должно быть больше года.

Пригодные для укладки основания

Перечень оснований, подходящих для укладки мембран ПВХ, довольно обширен. В их числе:

  • цементно-песчаные стяжки, толщиной от 50 мм и больше, залитые поверх утеплителей и конструктивных разуклонок;
  • сборные стяжки из асбестоцементного или цементно-стружечного листового материала толщиной не меньше 10 мм. Стелют его двумя пластами с разбежкой швов;
  • монолитное железобетонное перекрытие;
  • ж/б плиты, стыковые швы между которыми заполнены цементно-песчаным раствором;
  • сплошная обрешетка, собранная из листов влагостойкой фанеры толщиной от 18 мм и больше, или обработанных антисептиком досок толщиной от 25 мм и больше;
  • утепляющие стяжки из легких бетонов, залитые поверх перекрытий;
  • цементно-песчаные теплоизоляционные стяжки с заполнителем из керамзита, вермикулита, перлита;
  • жесткие плиты утеплителя, в технических характеристиках которых значится предел прочности в 60 кПа при максимальной деформации только 10%.

Минимальная маркировка бетона и цементно-песчаных растворов, применяемых в формировании основы под укладку ПВХ мембраны, М150. Можно больше, но без фанатизма, не оправдывающего необязательные расходы.

Согласно правилам, обозначенным в инструкции по монтажу мягкой полимерной кровли, предназначенная для укладки поверхность не должна иметь остроугольных выступов и ощутимых углублений. Допустимы плавные отклонения от гладких и ровных идеалов.

Под двухметровой рейкой, приложенной к основанию вдоль скатов, вполне может быть обнаружен зазор в 5мм, не имеющий резко выраженного рельефа. Неровность высотой/глубиной 10мм, определенная той же рейкой, приложенной поперек скатов, тоже не должна стать причиной дополнительного выравнивания.


Укладывают ПВХ покрытия исключительно в один слой. Не желательно, чтобы под тонкими кровельными материалами оказалась бугристая шероховатая поверхность. Если шероховатость устранить невозможно, перед укладкой на бетонные стяжки с недопустимым рельефом настилается разделительный слой геотекстиля с параметрами плотности 300 г/м².

Правила устройства пароизоляции

Кровельный пирог – многослойная конструкция, внутренним составляющим которой нельзя насыщаться водой. Увлажнение – верный путь к разрушающему итогу, проходящий через гниение утеплителя и смежных слоев. Несмотря на способность мембран ПВХ пропускать избыток пара, нежелательно, чтобы его потоки запросто курсировали через пирог.

Лучше поставить с обеих сторон защиту. Наружный фронт оберегает сама мембрана, удачно совмещающая функции гидроизоляции и отделочного покрытия. Оборону на внутреннем фронте ведет пароизоляционный барьер.

Защиту кровельного пирога от пара при устройстве мембранной кровли можно доверить:

  • Полимерной пароизоляции. Самыми подходящими для обустройства основания из профлиста считаются материалы на полиэтиленовой основе из-за дешевизны и простоты укладки. Их настилают полосами с нахлестом вдоль профильных волн. Крепят просто скотчем на бутилкаучуковой основе;
  • Битумная пароизоляция. Предпочтительный вариант для укладки на цементно-песчаные и бетонные основы, т.к. между ними и полиэтиленом потребовалась бы дополнительная разделительная прослойка из геотектиля. Укладывается с торцевыми и боковыми нахлестами, вдоль которых сваривается при помощи газовой горелки.

При углах наклона скатов до 5º пароизоляционный ковер не требует крепления. Достаточно веса уложенной сверху теплоизоляции. На кровлях с крутизной побольше обозначенного предела пароизоляцию крепят к основе. Настилают материал с заходом на вертикальные поверхности так, чтобы размещенный сверху утеплитель оказался в поддоне с бортами выше ее толщины на 5 см.


Принцип сооружения теплоизоляции

Тонкое ПВХ покрытие не сможет удержать тепло в здании самостоятельно. Потому монтаж крыши из мягкой полимерной кровли не обходится без использования теплоизоляции.

Применимы все существующие виды теплоизоляционных материалов, но в их списке есть наиболее предпочтительные:

  • Плиты минеральной ваты. Укладываются на сборные и монолитные стяжки, на металлопрофиль, расположенный широкой полкой вверх, на ж/б монолитные и сборные перекрытия. Рекомендуется материал с прочностью на сжатие минимум 40 кПа с характеристиками деформации 10%;
  • Пенополистирол. Укладывается с обязательной прослойкой из геотектиля или стехлополотна, если поверх будет крепиться мембрана. Однако чаще всего служит нижним пластом двухуровневой системы утепления или заливается цементно-песчаной стяжкой.

Кровли с механическим типом крепления рациональней сооружать с укладкой мембраны сразу на утеплитель. Естественно, в приоритете минераловатная теплоизоляция. Рекомендуется настилать плиты утеплителя в два яруса со смещением швов, как в рядах, так и в слоях.

Соорудить нижний слой можно из утеплителя с прочностью 35 кПа, а поверх настелить плиты с показателями 60 кПа. Если слой теплоизоляции не превышает 8см, допустимо устройство в один слой.

Для фиксации каждой из плит утеплителя требуется минимум два телескопических крепежных элемента. Плиты теплоизоляции монтируются вплотную с вертикальными поверхностями парапетов и стен, если не предполагается их отдельное обустройство. Если оно запланировано, от вертикальных поверхностей следует отступить на ширину одного плиты теплоизоляции.

Кровельные проходки и примыкания

Недопустим прямой контакт полимерной кровли с тепловыми источниками, генерирующими температуру более 80º С. Вокруг них должны устанавливаться фартуки и фланцы из ламинированной ПВХ жести. Примыкания к коммуникационным трубам выполняют с помощью заводских фасонных деталей или самостоятельно изготавливают их из неармированного материала.

Примыкания к парапету и стенам выполняется с устройством «кармана» с использованием специального металлического рельса.


Способы укладки полимерной мембраны

Перед укладкой полимерной мембраны следует обстоятельно подготовить основание. Швы должны быть замоноличены, свесы оснащены жестяными капельниками, ендовы дополнительными изоляционными коврами.

В отверстия кровельных проходок нужно установить гильзы, закрепит анкера на крыше, если они необходимы. Монтаж полимерного покрытия можно начинать с любой точки, но рекомендовано с наиболее низких участков кровли.

Полимерные мембраны крепятся к основанию механическим, балластным и клеевым способами. Между собой полосы свариваются, независимо от типа крепления к основе. Рекомендованная ширина шва 3см, допустимая 2см.

Вариант #1 – механический метод крепления

Механическое крепление – самый распространенный вариант, чаще всего применяемый для укладки мембраны на основу из профлиста или бетона, на которые заранее уложена теплоизоляция.


Фиксируют точечно телескопическим крепежом или линейно крепежными рейками. Закрывают места точечных креплений нахлестом следующей полосы или овальными заплатами, диаметр которых больше пластиковой шляпки на 10см. Линейную фиксацию закрывают нахлестами или приваренными к покрытию полосами полимерной мембраны.

Технология механического крепления по шагам:

  • первую полосу раскатанного по поверхности материала фиксируем тремя саморезами с телескопическим грибком сначала с одного торца, затем, натянув полотно хорошенько со второго;
  • шаркая по поверхности подошвами, натягиваем материал в поперечном направлении и крепим телескопическими крепежными элементами через 20см. Первым делом фиксируем одну длинную сторону, потом вторую. Крепеж устанавливаем четко по одной линии;
  • раскатываем вторую полосу так, чтобы ее длинный край лег с нахлестом в 10-12см и полностью перекрыл ряд установленного крепежа. Нужно учесть, что сварочный шов не должен касаться пластиковых телескопических шляпок. В обратном случае придется увеличить нахлест. Если все хорошо, устанавливаем телескопические крепления в том же порядке;
  • свариваем швы, пользуясь ручным или полуавтоматическим аппаратом. На производстве ручным прибором работают только на парапетах и в труднодоступных местах. Если объем работ небольшой, то в автоматическом оборудовании нет острой необходимости, ручного достаточно;
  • надежность шва контролируем шлицевой отверткой. Визуально огрехи сварки можно определить по отсутствию темной глянцевой полосы вдоль линии соединения. Брак исправляем вторичной сваркой;
  • продолжаем до завершения работы в том же порядке.

Полосы мембраны надо укладывать в разбежку, чтобы торцевые швы не располагались рядом. Вокруг труб крепление производится минимум в 4х точках.


Вариант #2 – принцип балластного монтажа

Метод применим в основном для низко-скатных крыш с уклоном до 3-4º. Вся ответственность по удержанию материала на крыше поручена балласту, которым может быть засыпка из гравия/гальки/щебня, тротуарная плитка, бетонная стяжка или почвенно-растительный слой.

По схеме расположения мембраны балластные кровли подразделяются на:

  • традиционные, в которых слой утеплителя перекрывает мембрана;
  • инверсионные, в которых теплоизоляция укладывается над мембраной.

Второй представитель характеризуется более длительным сроком службы, но заставляет потрудиться в процессе поиска и устранения протечек.

Балластные кровли делятся на эксплуатируемые и неэксплуатируемые разновидности. Первые оснащаются тротуарной плиткой или бетонным покрытием, вторые – пешеходными дорожками для обслуживания крыши. К балластным системам относятся кровли с озеленением.

Процесс устройства инверсионного типа:

  • первым укладываем слой геотекстиля, если основание битумное или деревянное с масляной пропиткой;
  • расстилаем полимерную мембрану с нахлестом в 80 мм. полосы располагаем с разбежкой швов. Свариваем обычным способом, толщина сварного шва 3см;
  • вдоль парапета, вокруг труб, водосточных воронок, фонарей устанавливаем точки механического крепления;
  • расстилаем геотекстиль и пригружаем его выбранным видом балласта.

Наименьший вес балласта, приходящийся на 1м² равен 50кг и более. Перед планированием устройства балластной крыши нужно учесть, сможет ли данную массу выдержать обустраиваемая конструкция.

Вариант #3 – клеевая технология крепления

Клеевой метод применяют, если уклон скатов более 25º или ненадежное старое основание не выдержит механических способов. В клеевых системах используется мембрана, оснащенная флисовой подложкой. Флиса нет только вдоль длинного края с тыльной стороны, предназначенной для сваривания.

Приклеивают на битумную мастику или монтажный клей следующим образом:

  • полосу сворачивают рулоном к середине;
  • на основание наносят горячий битум или клеевой состав и быстро раскатывают рулон от середины к краям;
  • следующую полосу стелют с нахлестом 8см и действуют по аналогии.

На старую битумную кровлю наносится только горячий битум, бетонную и цементно-песчаную основу предварительно обрабатывают праймером. Полотнища приклеенной мембраны свариваются между собой стандартным способом.


Закрепить полученную информацию поможет видео инструкция с наглядной демонстрацией технологии монтажа мягкой кровли:

Процесс сооружения мягкой кровли не слишком прост, но и не так сложен, как первоначально может показаться. Ведь одна из целей разработчиков материала заключалась в облегчении работ по устройству крыши. Благодаря их усердным стараниям укладку мембраны с успехом можно выполнить самостоятельно.

Герметичность и прочность кровли являются обязательными условиями комфортного проживания в загородном доме. Популярность индивидуального строительства порождает предложение новых материалов и технологий со стороны производителей. Одним из таких предложений являются мембранные плёнки, в том числе для кровель.

Как и чем монтировать мембранную крышу

Мембранные кровельные покрытия применяются для плоских и имеющих малый угол наклона конструкций крыш. При этом возможна укладка финишного материала поверх уже имеющейся старой кровли при производстве ремонта. Это значительно снижает трудоёмкость выполнения таких работ.

Мембранную плёнку можно укладывать поверх старого кровельного покрытия, предварительно выровняв его и очистив от грязи

Использование для плоских кровель мембранного материала создаёт высоконадёжное в отношении водонепроницаемости покрытие. Это относится в первую очередь к плёнкам, соединённым теплосварным способом. Срок службы мембранной кровли составляет до 50 лет, если всё сделано правильно. Для устройства такой крыши применяются:

  • мембраны из ПВХ - поливинилхлорида - наиболее популярный материал;
  • плёнки ЭПДМ на основе синтетического каучука (пропилен-диен-мономер);
  • мембраны ТПО - полиолефин термопластичный, содержащий до 70% этиленпропиленового каучука и порядка 30% полипропилена.

Кроме того, для повышения основных характеристик многие производители вводят в состав материала мембран стекловолокно или полиэфирные нити.

Основными свойствами, позволяющими успешно использовать мембраны для кровель, являются их пластичность и гибкость. Поэтому их можно применять на любых уклонах скатов. Такие кровли огнестойки, имеют длительные сроки эксплуатации и способны выдерживать большие нагрузки.

Фотогалерея: какие бывают мембранные крыши

Мембранным материалом можно покрыть кровлю любой формы Правильное формирование кровельного пирога обеспечивает долговечность крыши с мембранным покрытием Места стыков и примыканий пропаиваются с помощью специального инструмента Мембрану можно закреплять только по периметру, на всей остальной поверхности она будет держаться с помощью балласта (щебня или плитки)

Подготовка к устройству кровли

Предварительные мероприятия по устройству крыши из мембран не отличаются особой сложностью. Для этого необходимо:


Технология монтажа

Существует несколько методов устройства крыш с применением мембран.

Балластный метод

Таким способом устанавливается покрытие на кровлях с наклоном скатов не более 15 градусов. Монтаж производится следующим образом:


Клеевое закрепление

Установка мембран на клей применяется на кровлях сложной формы или при работе в местностях с повышенными ветровыми нагрузками. Крепление мембраны и обработка стыков производится специально разработанными клеями или двусторонними клеящими лентами. Приклеивание по всей площади контакта не производится, обрабатываются только стыковые поверхности и крайние кромки.

Монтажный клей применяется, если мембрана укладывается на:

  1. Древесину.
  2. Бетонные плиты или стяжку.
  3. Металлические поверхности (профнастил).

Для закрепления на вертикальных поверхностях дополнительно к клею применяются прижимные планки с уплотнителями. Технология монтажа проста и не предполагает использования специального оборудования.

Этот способ достаточно затратен и не даёт полной гарантии долгой эксплуатации, поэтому применяется не так часто в сравнении с остальными.

Монтаж кровли с помощью специальных клеевых составов не всегда обеспечивает необходимую долговечность, поэтому применяется редко

Видео: монтаж мембраны на битумную кровлю клеевым способом

Способ тёплой сварки

Сварка применяется для мембран ПВХ и ТПО. Соединение на стыках и по периметру производится при помощи нагрева струёй горячего воздуха при температуре 400–600 o C. При настилке мембран на больших площадях используется профессиональное сварочное оборудование, работающее в автоматическом режиме. Ширина шва составляет 3–12 сантиметров.

Получаемые стыки абсолютно герметичны, а сопротивляемость соединения разрыву становится выше, чем у сплошной мембраны.

При работе в труднодоступных местах используются ручные строительные фены и специальная оснастка для прижима краёв к месту установки.

Места стыка нагреваются до 400–600 градусов, а затем прокатываются валиками

Видео: монтаж мембранной кровли

Механическое крепление мембран

Механическая фиксация мембран является наиболее доступным для исполнения своими руками способом. Он также применяется, когда стропильная система не выдержит нагрузки балласта. Поводом к отказу от клеевого метода может служить сложная форма кровли, особенно в местностях с высокими ветровыми нагрузками.

Лучшей основой для применения механического крепления служит бетон или профлист. При фиксации листов к вертикальным плоскостям используются рейки с уплотнителем на изнаночной стороне. Крепление по полотну производится через оцинкованные самонарезающие винты с использованием широких шайб. Шаг установки крепежа - не более 20 сантиметров.

Механическое крепление мембраны в бетонную поверхность производится тарельчатыми дюбель-гвоздями с широкими шляпками

Видео: устройство мембранной кровли механическим способом

Особенности монтажа элементов мембранной крыши

Применение мембран для покрытия кровли связано с рядом особенностей в зависимости от его вида и характера основания.

Важны следующие моменты:

  1. Особое значение имеет выбор вида мембранного покрытия с учётом местных условий и вида кровли.
  2. Все виды плёнок подходят для крепления балластным способом.
  3. При использовании мембран ТПО лучшим видом крепления является механический, поскольку он не требует эластичности плёнки.
  4. Если полотно покрытия соединяется тёплой сваркой вручную, нужно выбирать плёнку без упрочняющих добавок.
  5. При использовании ПВХ-мембраны нельзя допускать контакта покрытия с веществами, содержащими нефтепродукты, растворители и битум. При несоблюдении этого условия плёнка может разрушиться. Если имеется такое соседство, плёнку нужно разделять слоем пенополистирола.

Фотогалерея: виды мембранных плёнок

В ряде случае полиэтиленовая плёнка является лучшим вариантом мембраны Плёнка ЭПДМ в основном применяется для покрытия плоских крыш Армирование плёнки значительно повышает её прочность и долговечность ПВХ-мембраны хорошо работают в условиях низких температур и обладают отличными гидроизоляционными свойствами

Инструмент для монтажа

Набор инструментов для укладки мембранной крыши на загородном частном доме:

  1. Фен строительный с возможностью получения воздушной струи с температурой до 600 градусов.
  2. Валик латунный для прокатки углов и труднодоступных мест.
  3. Прорезиненый валик с термостойкой резиной.
  4. Строительный нож для обрезки плёнки.
  5. Ножницы для вырезки углов и кругляшей из плёнки, которые устанавливаются в местах с трёхслойной плёнкой на сложных стыках.
  6. Дрель или перфоратор (при использовании механического способа крепления).
  7. Молоток слесарный.
  8. Удлинитель на всю длину кровли по диагонали.

В процессе работы может понадобиться и другой инструмент общего пользования, который, как правило, имеется в любом хозяйстве.

Для самостоятельного монтажа мембранной плёнки необходимо иметь строительный фен и набор ножей и валиков

Фен для монтажа мембранной кровли

На строительный фен стоит обратить более пристальное внимание. В руках рачительного хозяина он может стать незаменимым инструментом, способным выполнять следующие функции:


Для этого инструмента можно придумать ещё много различных применений, поэтому он по праву может занять постоянное место в инструментальном шкафу домашнего мастера.

Устройство и технические характеристики фенов

Строительные фены выпускаются многими производителями, но устройство у всех одинаковое. Основными деталями фена являются:

  1. Электродвигатель вентилятора. В зависимости от модели его мощность может составлять от 500 до 3 000 Вт. Оснащается одной или двумя крыльчатками для подачи воздуха. Для домашнего применения достаточно инструмента мощностью порядка 2 000 Вт.
  2. Керамическая основа, на которой устанавливается нагревательный элемент для повышения температуры воздушной струи.
  3. Пластиковый корпус из термостойкого материала.
  4. Электронные устройства для придания инструменту специфических функций и характеристик.

Основные характеристики фенов:

  1. Температура нагрева воздушной струи в большинстве моделей составляет от 300 до 650 o C. Предлагаются также изделия с возможностью установки температуры до 800 o C.
  2. Производительность фенов определяется количеством воздуха за минуту работы. Модели среднего класса выдают до 650 литров горячего воздуха. Чем выше производительность фена, тем больше набор возможностей при его использовании.
  3. Регулировка объёма воздуха. Эту функцию имеют не все модели, но она считается важной, поскольку расширяет возможности инструмента.
  4. Устройство поддержания заданной температуры воздушного потока. Важная функция для обеспечения стабильной работы устройства в течение длительного времени. Она защищает инструмент от перегрева.
  5. Устройство для быстрого охлаждения воздушной струи. Весьма полезное свойство, позволяющее сократить время ожидания остывания обработанного объекта.
  6. Наличие фильтра на воздухозаборнике позволяет использовать инструмент в запылённом помещении и продлевает срок его службы.

Моделей строительных фенов производится множество. Ценовые показатели колеблются также в широком диапазоне. Можно приобрети самую простую модель за 900 рублей. Самые дорогие изделия обойдутся в 4 800–5 000 руб. Такая разница определяется набором дополнительных функций и характеристик, присущих конкретному прибору. Учитывая возможности, которые фен предоставляет домашнему мастеру, такой инструмент в своём арсенале весьма желателен.

Строительный фен позволяет выполнять многие сложные работы, поэтому его наличие в наборе инструментов крайне желательно

Если инструмент нужен для выполнения разовых работ, его можно взять в аренду. Арендная плата при этом составит от 250 рублей в сутки, и предложений в сети достаточно.

Видео: опыт эксплуатации и процесс выбора технического или строительного фена

Применение мембранных плёнок в загородном строительстве повышает качество кровель при первоначальном использовании и значительно упрощает проведение ремонтных работ. Простой инструмент и несложная технология применения позволяет выполнять работы самостоятельно даже не очень продвинутым в строительстве людям. Успехов и вам!

Один из важнейших элементов систем водоснабжения для частных домов это гидроаккумулятор. Благодаря этому устройству, поддерживается постоянное давление в водопроводе, а также осуществляется защита всего оборудования от гидравлических ударов.

Мембрана для гидроаккумулятора

Однако, ничего не вечно, поэтому нужно знать, как заменить мембрану в гидроаккумуляторе – без нее он не сможет работать.

Принцип работы мембраны в гидроаккумуляторе

На самом деле, сменная мембрана для гидроаккумулятора – это его самая важная часть. Без нее, это будет просто накопительный металлический бак. Мембрана представляет собой резиновую грушу, сделанную из каучука. В зависимости от размеров самого бака, она может быть разной емкости, однако от этого, принцип ее работы не меняется.

Мембрана внутри гидробака

Она вставляется внутрь бака и делит его на две части:

  1. В одну насосом закачивается воздух.
  2. Во вторую подается вода с системы водопровода.

Давление воздуха в баке составляет 1,5-2 атмосферы. Благодаря этому, в водопроводе поддерживается постоянное рабочее давление.

Кроме этого, сменная мембрана для гидроаккумулятора выполняет еще одну важную задачу – она предохраняет водопровод от гидроударов и защищает насос от слишком частых включений. Происходит это таким образом:

  • например, мощность насоса составляет 3 м3\час, а кран потребляет 0,6 м3\час;
  • получается, что когда открывается кран, то сразу же включается насос, однако, поскольку он подает воды значительно больше, чем нужно крану, он сразу же выключается. А как только давление в системе упадет – насос снова включится. Таким образом, он будет включаться и выключаться через каждую секунду – а это может привести к тому, что устройство просто сгорит;
  • благодаря гидроаккумулятору, насос будет включаться только тогда, когда давление в мембране упадет ниже заданного.

Получается, что это устройство занимает важное место в системе водоснабжения. И желательно знать, как отремонтировать его своими руками. Тем более, это не так сложно.

Виды мембран

Существует 2 типа этих изделий:

  1. Для отопления.
  2. Для использования в водопроводах.

Различные виды мембран

Естественно, что между ними есть определенные различия:

  • максимальная температура мембран для водопровода составляет 70 градусов, тогда как для отопительных – 99;
  • изделия для водопровода изготавливаются из каучука, а для отопления из специального состава.

Отопительные мембраны выдерживают давление в 8 атмосфер, тогда как водопроводные – 7. Их объемы также бывают разными, однако наиболее популярные находятся в пределах 100 литров

Как определить, что мембрана пришла в негодность

Вообще, производители заявляют срок службы этих изделий равный 5 годам. Однако, на практике, такое случается редко. Ведь мембраны очень не любят:

  • повышение температуры выше установленного;
  • частые перепады давления;
  • интенсивное сжатие.

На практике, редко удается избежать работы гидробака в жестком режиме, поэтому срок службы груши уменьшается до 3-х лет.

Как определить, что пора поменять мембрану в гидравлическом аккумуляторе:

  • насос стал включаться слишком часто;
  • не держится постоянное давление воды.

Это явные признаки повреждения мембраны, однако, это может указывать и на повреждения в корпусе гидроаккумулятора. Поэтому, перед тем, как разбирать емкость, желательно проверить состояние самого бака.

Замена мембраны

Если причина уже определена, то нужно приступать к ремонту. И первое, что нужно сделать, это приобрести новое изделие. Здесь важно не экономить и покупать оригинальные запчасти, т.к. дешевые подделки могут быстро выйти из строя. И получится такая ситуация, что через полгода придется делать все заново.

Подготовка

Когда новая мембрана куплена, нужно приготовить набор ключей и переходить к ремонту. Вначале, нужно слить воду из самой емкости. Для этого:

  • перекрывается подача воды к гидроаккумулятору;
  • с него стравливается воздух;
  • сливается вода.

Важный момент – если при сливе воды из аккумулятора будет выходить и воздух, значит, резиновая груша повреждена. То же самое качается и ниппеля – если при стравливании воздуха будет выходить вода, это говорит о поломке.

Дело в том, что груша разделяет внутренность бака на две независимые камеры. Поэтому смешивание воды и воздуха исключается. Если же это происходит, значит внутренняя целостность нарушена.

Этапы ремонта

Когда вода с бака спущена, можно переходить непосредственно к ремонту. Замена мембраны в гидроаккумуляторе делается таким образом:

На этом сам процесс замены заканчивается. Теперь, нужно делать пробный пуск гидроаккумулятора. Для этого, он обратно подсоединяется к водопроводу. Но в начале, в него нужно накачать воздух до рабочего давления, оно составляет 1,5-2 атмосферы.

А после, включается подача воды. При этом, не стоит открывать кран подачи на полную мощность. Это может привести к разрыву мембраны, поэтому, вода набирается постепенно.

Таким образом, поменять мембрану своими руками довольно просто. И с этим без проблем можно справиться не привлекая специалистов. Тем более, стоимость замены в специализированном центре, может получиться довольно высокой.

Видео

Профилактика

Чтобы поломка гидроаккумулятора не застала врасплох, нужно проводить его периодическое обслуживание. Делать его несложно:

  • один раз в 3-4 месяца бак осматривается на наличие повреждений;
  • раз в полгода, нужно проверить работу манометра, реле давления, а также проверить уровень давления воздуха в баке.

Дело в том, что средний срок службы этих изделий редко превышает эту цифру. Поэтому лучше провести замену заранее – так можно заранее обезопасить себя от внезапной поломки.

Исключительно быстрый и наиболее простой метод создания кровли — выполнение ее на основе синтетического каучука, именуемого также поливинилхлоридом. ПВХ кровля получила название мембранной, она отличается долгим сроком службы, малым весом, высокой степенью экологичности, имеет ряд других преимуществ.


Виды мембран

Существуют три типа мембран, которые используются как кровельные материалы:

  1. ЭПДМ – изготовленная из специального каучука, имеющая хорошие физические свойства. Среди них: температурный диапазон -50 — +150 градусов Цельсия, устойчива к озону, погодным условиям, старению.
  2. ТПО – имеет устойчивый химический состав, повышенная сопротивляемость к воздействию химических веществ и микроорганизмов.
  3. ПВХ – это всем известный поливинилхлорид. До недавнего времени ПВХ мембраны были самыми распространенными из всех вышеприведенных.

Особенности, технология, процесс монтажа

Чтобы начать монтаж мембранной кровли своими руками, нужно определиться с видом соединения полотен. Для этого может применяться сварка горячим воздухом или склеивание при помощи специальных двухсторонних клейких лент.

Способы соединения швов:

  • Склеивание — способ не самый надежный в силу низкой прочности клеевых соединений. Применяется он в основном для мембран ЭПДМ, хотя нужно сказать, что этот способ проще. Сварка горячим воздухом дает соединение, которое по прочности не уступает основному материалу, однако требует наличие специального инструмента.
  • Сварка может быть автоматическая (с применением сварочных машин) и ручная (используется термофен). Если Вы делаете монтаж мембранной кровли своими руками, то покупать дорогостоящие сварочные машины не имеет смысла. Достаточным будет термофен или промышленный фен, который обладает небольшой производительностью, однако его цена на порядок ниже.

Чтобы правильно сварить кровельный материал нужно подобрать оптимальные параметры. На их изменение, влияет температура окружающего воздуха, влажность, скорость ветра. Оптимальными считаются температура 15 – 20 градусов тепла и нормальная влажность воздуха. Температура горячего воздуха должна быть в районе 500°С, давление осуществляется прикаточным валиком, который нужно купить отдельно. Если Вы делаете это впервые сначала лучше потренироваться на небольших, специально отведенных для этой цели полотнищах. Результатом должен стать целостный шов без отслаиваний и прожогов.

Самый простой способ крепления покрытия к основанию – балластный. Его применяют когда уклон скатов менее 10°. Чтобы полотно не унесло ветром, его слоем балласта, минимальный вес которого должен быть 50 кг / м² мембраны. В качестве балласта обычно применяется речная галька, окатанные гравий и щебень. Недостатком такого способа крепления является большой вес конструкции.

Если крыша не рассчитана на большой вес, тогда применяют механический способ крепления. Закрепление по периметру крыши делают при помощи специальных краевых реек. Остальную площадь крепят пластиковыми грибками на металлических анкерах. Механическое крепление более надежное и имеет меньший вес.

Также мембранное покрытие можно приклеить к основанию. Такой метод не находит широкого применения из-за своей дороговизны. Применяется по большей части на сложных крышах.

Преимуществами мембранной кровли являются: большой срок эксплуатации (50 лет), отличные гидроизоляционные свойства, невосприимчивость к частым сменам погодных условий. Из недостатков можно выделить высокую стоимость материалов.

Можно сделать вывод о целесообразности применения мембранной кровли. Несмотря на относительно дорогие материалы, простота возведения и долговечность, делают такое покрытие достаточно привлекательным для использования.

Сразу хочу предупредить, что этот топик не совсем по тематике Хабра, но в комментариях к посту про разработанный в MIT элемент идею вроде бы поддержали, так что ниже я опишу некоторые соображения о биотоливных элементах.
Работа, на основе которой написан данный топик, выполнялась мной в 11 классе, и заняла второе место на международной конференции INTEL ISEF.

Топливный элемент – химический источник тока, в котором химическая энергия восстановителя (топлива) и окислителя, непрерывно и раздельно подаваемых к электродам, непосредственно превращается в электрическую
энергию. Принципиальная схема топливного элемента (ТЭ) представлена ниже:

ТЭ состоит из анода, катода, ионного проводника, анодной и катодной камеры. На данный момент мощности биотопливных элементов недостаточно для использования в промэшленных масшатабах, но БТЭ с небольшой мощностью могут использоваться для медицинских целей как чувствительные датчики поскольку сила тока в них пропорциональна количеству перерабатываемого топлива.
К настоящему времени предложено большое число конструктивных разновидностей ТЭ. В каждом конкретном случае конструкция ТЭ зависит от назначения ТЭ, типа реагента и ионного проводника. В особую группу выделяют биотопливные элементы, в которых используются биологические катализаторы. Важной отличительной чертой биологических систем является их способность к селективному окислению различных топлив при низкой температуре.
В большинстве случаев в биоэлектрокатализе используют иммобилизованные ферменты, т.е. ферменты, выделенные из живых организмов и закрепленные на носителе, но сохранившие при этом каталитическую активность (частично или полностью), что позволяет использовать их повторно. Рассмотрим на примере биотопливный элемент, в котором ферментативная реакция сопряжена с электродной при использовании медиатора. Схема биотопливного элемента на основе глюкозооксидазы:

Биотопливный элемент состоит из двух инертных электродов из золота, платины или углерода, погруженных в буферный раствор. Электроды разделены ионообменной мембраной: анодное отделение продувается воздухом, катодное - азотом. Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. Подходящие для биосенсоров мембраны разных типов выпускаются в Великобритании многими фирмами (ВДН, ВИРОКТ).
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и растворимый медиатор, при 20 °С приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента (глюкозы). Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ. Как сенсор, описанный биотопливный элемент, имеет определенные ограничения, связанные с присутствием медиатора и определенными требованиями к кислородному катоду и мембране. Последняя должна удерживать фермент и в тоже время пропускать низкомолекулярные компоненты: газ, медиатор, субстрат. Ионообменные мембраны, как правило, удовлетворяют этим требованиям, хотя их диффузионные свойства зависят от рН буферного раствора. Диффузия компонентов через мембрану приводит к снижению эффективности переноса электрона вследствие побочных реакций.
На сегодняшний день имеются лабораторные модели топливных элементов с ферментными катализаторами, которые по своим характеристикам не отвечают требованиям их практического применения. Основные усилия в ближайшие несколько лет будут направлены на доработку биотопливных элементов и дальнейшее применение биотопливного элемента будет связано большей степенью с медициной, например: вживляемый биотопливный элемент, использующий кислород и глюкозу.
При использовании ферментов в электрокатализе главной проблемой, требующей решения, является проблема сопряжения ферментативной реакции с электрохимической, то есть обеспечение эффективного транспорта электронов с активного центра фермента на электрод, что может достигаться следующими путями:
1. Перенос электронов с активного центра фермента на электрод с помощью низкомолекулярного переносчика - медиатора (медиаторный биоэлектрокатализ).
2. Непосредственное, прямое окисление и восстановление активных центров фермента на электроде (прямой биоэлектрокатализ).
При этом медиаторное сопряжение ферментативной и электрохимической реакции в свою очередь можно осуществить четырьмя способами:
1) фермент и медиатор находятся в объеме раствора и медиатор диффундирует к поверхности электрода;
2) фермент находится на поверхности электрода, а медиатор в обьеме раствора;
3) фермент и медиатор иммобилизованы на поверхности электрода;
4) медиатор пришит к поверхности электрода, а фермент находится в растворе.

В данной работе катализатором катодной реакции восстановления кислорода служила лакказа, а катализатором анодной реакции окисления глюкозы - глюкозооксидаза (ГОД). Ферменты использовались в составе композитных материалов, создание которых является одним из наиболее важных этапов создания биотопливных элементов, одновременно выполняющих функцию аналитического датчика. Биокомпозитные материалы в данном случае должны обеспечивать селективность и чувствительность определения субстрата и в тоже время обладать высокой биоэлектрокаталитической активностью, приближающейся к ферментативной.
Лакказа представляет собой Cu-содержащую оксидоредуктазу, основной функцией которой в нативных условиях является окисление органических субстратов (фенолы и их производные) кислородом, который при этом восстанавливается до воды. Молекулярная масса фермента составляет 40000 г/моль.

К настоящему времени показано, что лакказа является наиболее активным электрокатализатором восстановления кислорода. В ее присутствии на электроде в атмосфере кислорода устанавливается потенциал близкий к равновесному кислородному потенциалу, и восстановление кислорода протекает непосредственно до воды.
В качестве катализатора катодной реакции (восстановления кислорода) использовали композитный материал на основе лакказы, ацетиленовой сажи АД-100 и нафиона. Особенностью композита является структура, обеспечивающая ориентацию молекулы фермента по отношению к электронпроводящей матрице, необходимую для прямого переноса электрона. Удельная биоэлектрокаталитическая активность лакказы в композите приближается к наблюдаемой в ферментативном катализе. Способ сопряжения ферментативной и электрохимической реакции в случае лакказы, т.е. способ переноса электрона от субстрата через активный центр фермента лакказы на электрод, – прямой биэлектрокатализ.

Глюкозокооксидаза (ГОД) – фермент класса оксидоредуктаз, имеет две субъединицы, каждая из которых имеет свой активный центр – (флавинадениндинуклеотид) ФАД. ГОД является ферментом, селективным по отношению к донору электронов – глюкозе, а в качестве акцепторов электронов может использовать многие субстраты. Молекулярная масса фермента составляет 180000 г/моль.

В работе использовали композитный материал на основе ГОД и ферроцена (Фц) для анодного окисления глюкозы по медиаторному механизму. Композитный материал включает ГОД, высокодисперсный коллоидный графит (ВКГ), Фц и нафион, что позволило получить электронопроводящую матрицу с высокоразвитой поверхностью, обеспечить эффективный транспорт реагентов в зону реакции и стабильные характеристики композитного материала. Способ сопряжения ферментативной и электрохимической реакций, т.е. обеспечение эффективного транспорта электронов от активного центра ГОД на электрод – медиаторный, при этом фермент и медиатор были иммобилизованы на поверхности электрода. В качестве медиатора - акцептора электронов – использовали ферроцен. При окислении органического субстрата – глюкозы, ферроцен восстанавливается, а затем окисляется на электроде.

Если кому-то интересно, я могу подробно описать процесс получения покрытия электородов, но за этим лучше пишите в личку. А в топике я просто опишу полученную структуру.

1. АД-100.
2. лакказа.
3. гидрофобная пористая подложка.
4. нафион.

После того, как электорды получены мы перешли непосредственно к экспериментальной части. Вот так выглядела наша рабочая ячейка:

1. электрод сравнения Ag/AgCl;
2. рабочий электрод;
3. вспомогательный электрод - Рt.
В опыте с глюкозооксидазой - продувка аргоном, с лакказой - кислородом.

Восстановление кислорода на саже в отсутствии лакказы происходит при потенциалах ниже нуля и происходит в две стадии: через промежуточное образование перекиси водорода. На рисунке представлена поляризационная кривая электровосстановления кислорода лакказой иммобилизованной на АД-100, полученная в атмосфере кислорода в растворе с рН 4,5. В этих условиях устанавливается стационарный потенциал близкий к равновесному кислородному потенциалу (0,76 В). При потенциалах катоднее 0,76 В на ферментном электрода наблюдается каталитическое восстановление кислорода, которое протекает по механизму прямого биоэлектрокатализа непосредственно до воды. В области потенциалов катоднее 0,55 В на кривой наблюдается плато, которое соответствует предельному кинетическому току восстановления кислорода. Величина предельного тока составила около 630 мкА/см2.

Электрохимическое поведение композитного материала, на основе ГОД нафиона, ферроцена и ВКГ, исследовали методом циклической вольтамперометрии (ЦВА). Состояние композитного материала в отсутствии глюкозы в фосфатно-буферном растворе контролировали по кривым заряжения. На кривой заряжения при потенциале (–0,40) В наблюдаются максимумы относящиеся редокс-превращениям активного центра ГОД – (ФАД), а при 0,20-0,25 В максимумы окисления и восстановления ферроцена.

Из полученных результатов следует, что на основе катода с лакказой, в качестве катализатора кислородной реакции, и анода на основе глюкозооксидазы для окисления глюкозы, существует принципиальная возможность создания биотопливного элемента. Правда на этом пути есть множество препятствий, например пики активности ферментов наблюдаются при разном pH. Это привело к необходимости добавлять в БТЭ ионообменную мембрану.Мембрана позволяет пространственно разделить реакции, протекающие в электродных отделениях элемента, и в тоже время обеспечивает обмен протонами между ними. В анодное отделение поступает воздух.
Введение глюкозы в биотопливный элемент, содержащий глюкозооксидазу и медиатор, приводит к возникновению потока электронов от фермента к аноду через медиатор. По внешней цепи электроны идут к катоду, где в идеальных условиях в присутствии протонов и кислорода образуется вода. Результирующий ток (в отсутствие насыщения) пропорционален добавке скоростьопределяющего компонента - глюкозы. Измеряя стационарные токи, можно быстро (5с) определить даже малые концентрации глюкозы - до 0,1 мМ.

К сожалению довести идею этого БТЭ до практического внедрения мне не удалось, т.к. сразу после 11 класса я пошёл учиться на программиста, чем усердно занимаюсь и сегодня. Спасибо всем, кто осилил.