Сначала, прочитав учебник, энциклопедии и статьи в Интернете, я узнала, как выглядит строение цветочных растений

Органы цветочного растения - побег, корень, цветки, плоды с семенами. И все они состоят из различных видов ткани: образовательной, покровной, механической, проводящей, основной. Все эти ткани выполняют различные функции в жизни растений.

Транспорт воды в цветочных растениях

Чтобы растение могло расти, должны выполняться определенные условия: свет, тепло, вода, питание. Активное перемещение веществ у растений происходит по проводящим тканям. Вода и растворенные в ней минеральные вещества передвигаются в растении от корней к цветку по сосудам. Вода поступает в растение через корневые волоски, затем вода по сосудам корня под давлением поднимается. Попав в листья, вода испаряется с поверхности клеток и в виде пара выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению.

Но какие силы обеспечивают движение тока воды вверх по стеблю в стакане с водой? Можно предположить, что вода выталкивается снизу или ее тянут сверху. На небольшие расстояния транспорт веществ обеспечивают физические процессы диффузии. Молекулы воды передвигаются из той области, где их концентрация высока, туда, где их концентрация низка.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №85

ОРДЖОНИКИДЗЕВСКОГО РАЙОНА ГОРОДСКОГО ОКРУГА ГОРОД УФА

РЕСПУБЛИКИ БАШКОРТОСТАН

Секция: «Окружающий мир»

Тема: Движение воды в растениях

ученица 2 «Б» класса

Научный руководитель : Сафарова Л.М

учитель начальных классов

Уфа -2013

Оглавление

Введение…………………………………………………..с.3

Глава I. Основы поглощения воды……………………..с. 4-6

1.1 Корневая система как орган поглощения воды

1.2 Основные двигатели водного тока

Глава II . Транспирация………………………………….. с.7-9

2.1 Назначение транспирации

Глава III . Адаптация к дефициту воды…………………с.10-11

Заключение……………………………………………….с.12

Список литературы………………………………………с.13

Введение

Если посмотреть на фотографию нашей планеты, полученную из космоса, сразу видно обилие голубого цвета на земном шаре. Это - вода, занимающая три четверти поверхности Земли. Вода - все знают, как она проста. Но за этой кажущейся простотой - свойства самого удивительного и замечательного вещества на Земле.

Данная тема достаточно актуальна , так как за последние десятилетия возросла скорость изменений, относящихся к различным явлениям жизни всего мирового сообщества, в том числе и по отношению к воде.

Цель работы: изучить движение воды в растениях.

Постановка указанной цели определяет круг задач:

Сбор и анализ литературы по данному исследованию;

Провести анализ литературы;

Провести опытно – экспериментальную работу.

Объект исследования : вода

Предмет исследования : движение воды в растениях

Практическая ценность работы состоит в широких возможностях применения основных выводов настоящего исследования на уроках, классных часах, внеклассных мероприятиях.

Глава I. Основы поглощения воды

Живые растительные клетки на 80-90 процентов состоят из воды. Даже клетки сухих семян, в которых приостановлена жизнь, содержат 10 процентов воды. Листья растений постоянно испаряют воду, особенно днем. Это происходит потому, что их поверхность усеяна многочисленными микроскопическими отверстиями - устьицами. Причем на нижней поверхности листа, их значительно больше, чем на верхней. Днем устьица открыты и водяные пары выходят из листа. Ночью же они закрываются, и испарение воды практически прекращается. Но и ночью растение медленно теряет воду. Она уходит, минуя устьица, через тонкую кожицу листа.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой обеспечивает прочность тканей и сохранение структуры травянистых растений. Рост клеток идет главным образом за счет накопления воды в определенных ее частях.

Таким образом, вода обеспечивает протекание процессов обмена. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа, прежде всего, заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы.

    1. Корневая система как орган поглощения воды

Водную проблему растение решает с помощью хорошо развитой водопроводящей системы, которая начинается в корнях, поглощающих влагу из почвы, продолжается в трубках, подающих ее ко всем частям растения, и заканчивается испарением из листьев в воздух. Кажется, все просто. Однако механизм передвижения воды на самом деле сложен и не до конца еще изучен.

Рост корня, его ветвление продолжается в течение всей жизни растительного организма, то есть практически он не ограничен. Определение размеров корневых систем требует специальных методов. Оказалось, что общая поверхность корней обычно превышает поверхность надземных органов в 104-150 раз. При выращивании одиночного растения ржи было установлено, что общая длинна его корней достигает 600 км при этом на них образуется 15 миллиардов корневых волосков. Эти данные говорят об огромной потенциальной способности к росту корневых систем. Однако эта способность не всегда проявляется. При росте растений с достаточно большой густотой размеры корневых систем заметно уменьшаются.

Корневые волоски проникают в самые мелкие трещины почвы и, обнаружив хоть немного влаги, поглощают ее.

Важное значение для развития корневых систем имеет кислород. Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо продуваемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему.

    1. Основные двигатели водного тока

Поглощение воды корневой системой идет благодаря работе двух двигателей водного тока: верхнего двигателя, испарения (транспирации), и нижнего двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является сила испарения, в результате которой возникает градиент приток водного потенциала. Водный потенциал – это мера энергии, которую использует вода для передвижения. Водный потенциал и сосущая сила одинаковы по значению, но противоположны по знаку. Чем меньше насыщенна водой данная системы, тем меньше ее водный потенциал.

Таким образом, верхний двигатель водного тока в растении – это присасывающая сила листьев, и его работа мало связана с жизнедеятельностью корневой системы. Действительно, опыты показали, что вода может поступать в побеги и через мертвую корневую систему, причем в этом случае поглощение воды даже ускоряется.

Глава II . Транспирация

Транспирация определяется как испарение воды в атмосферу с листьев и стеблей живых растений. Растения впитывают влагу, содержащуюся в почве, через корни, причем эта вода может брать начало глубоко под землей. Так, например, зерновые растения имеют корни длиной до 2.5 метров, а корни некоторых растений пустыни уходят в землю на глубину 20 метров. Вода, которую выкачивают растения из-под земли, доставляет питательные вещества к листьям растений. Эта подкачка регулируется испарением воды через небольшие поры, которые расположены с обратной стороны листьев. Растение испаряет воду, когда влажность окружающего воздуха ниже, чем влажность воздуха в порах; в противном случае растение поглощает водяной пар из воздуха. Транспирация отвечает приблизительно за 10% всей испаряющейся влаги.

Для того чтоб наглядно рассмотреть этот процесс мы провели опыт. Для опыта нам понадобились: белые цветы, пищевые красители, ёмкости для воды, нож, вода.

Согласно плана работы:

    Наполнили емкости водой

    Всем цветам срезали стебли под углом 45градусов в теплой воде, для большей наглядности эксперимента у одного цветка стебель разрезали на 2 части, не до конца.

    Поместили по одному цветку в каждую емкость с красителем, цветок с расщепленным стеблем поместили в 2 емкости с красителями красного и бирюзового цвета.

    В течение 24 часов наблюдали за цветами (См. Таблица 1).

Таблица 1

п/п

Прошедшее время

Описание наблюдений

1 час

Центр цветка проявил чуть заметную окраску, в основном бирюзовый цвет.

2 часа

Стали проявляться прожилки на других цветах

10 часов

С первого взгляда видно, что цветы приобрели разую окраску (лучше всего проявляется синий и бирюзовый цвет).

18 часов

Хорошо видны прожилки. На кончиках лепестков появляются ярко выраженные пятна.

24 часа

Цветок с расщепленным стеблем окрашен наполовину, бирюзовый цвет видно хорошо, а красный очень плохо

Объяснение опыта:

Вода поступает в растение из почвы через корневые волоски и молодые части корней и по сосудам разносится по всей его надземной части. С передвигающейся водой разносятся по всему растению поглощенные корнем минеральные вещества (в проделанном опыте это видно по окрашенным лепесткам). Цветы, которые мы используем в эксперименте, лишены корней. Тем не менее, растение не теряет возможность поглощать воду. Это возможно благодаря процессу транспирации - испарению воды растением. Основным органом транспирации является лист. В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Транспирация спасает растение от перегрева. Кроме того, испарение участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

2.1. Назначение транспирации

В обычно протекающих процессах транспирация не является необходимой. Так если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти сознательно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Известно, что большая часть всей поглощенной энергии тратится на транспирацию, которая в определенном объеме полезна растительному организму.

1.Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза. Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2.Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

Глава III . Адаптация к дефициту воды

Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций. Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее, из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

Увлажненность местообитания и, как следствие, водообеснечение наземных организмов зависят, прежде всего, от количества осадков, их распределения по временам года, наличия водоемов, уровня грунтовых вод, запасов почвенной влаги и т.д.

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности воздуха влагой.

Гигрофиты - растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Наиболее типичные гигрофиты - травянистые растения влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Ксерофиты - растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов. Структурные и физиологические особенности ксерофитов нацелены на преодоление постоянного или временного недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется тремя способами:

Эффективным добыванием (всасыванием) воды

Экономным ее расходованием

Способностью переносить большие потери воды

К группе ксерофитов относятся - растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи и др.).

Корневая система поверхностная, мало - развитая, рассчитана на поглощение воды из верхних слоев почвы, увлажненных редко выпадающими дождями. В засуху корни могут отмирать, но после дождей быстро (за 2-4 дня) отрастают новые.

Мезофиты - занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием. К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки. Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

Специфичные пути регуляции водообмена позволили растениям занять самые различные по экологическим условиям участки суши. Многообразие способов приспособления лежит, таким образом, в основе распространения растений на Земле, где дефицит влаги является одной из главных проблем экологической адаптации.

Заключение

Из всего выше перечисленного можно вывести общее заключение, что при дефиците влаги растения могут адаптироваться т.е образование корневой системы, которая достигает влажных зон почвы; ограничение расхода воды на транспирацию; запасание воды в тканях растений.

Так как вода является основной составной частью растительных организмов. Вода - это та среда, в которой протекает все процессы обмена веществ.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой, обеспечивает прочность тканей, сохранение структуры травянистых растений.

Таким образом, вода обеспечивает протекание процессов обмена, связь организма со средой. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы.

Большая детская энциклопедия Том 9 «Растения и животные» [электронный ресурс] – ООО Мастермедиа 2006 г. 1 электронный оптический диск (CD - ROM ).

Вода, поступившая в клетки корня под влиянием разности водных потенциалов, которые возникают благодаря транспирации и корневого давления, передвигается до проводящих элементов ксилемы. Согласно современным представлениям, вода в корневой системе может перемещаться в радиальном направлении тремя путями: апопластическим, симпластическим, трансмембранным.

При транспорте по апопласту вода передвигается по клеточным стенкам, не проходя через мембраны.

При симпластном транспорте вода проникает в клетку через полупроницаемую мембрану и далее перемещается по протопластам клеток, которые соединœены между собой многочисленными плазмодесмами.

При трансмембранном транспорте вода перетекает через клетки и при этом проходит, по крайней мере, две плазматические мембраны.

Передвижение воды по коре корня идет главным образом по апопласту, где она встречает меньшее сопротивление, и лишь частично по симпласту.

Апопластный путь прерывается в эндодерме в связи с наличием поясков Каспари. Вместе с тем в апикальной части суберинизация отсутствует, в связи с этим вода легко проникает через эндодерму. Вместе с тем, в суберинизированных частях корня вода может проходить через пропускные клетки.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, мы имеем дело как бы с осмометром, у которого полупроницаемая мембрана расположена в клетках эндодермы. Вода устремляется через эту мембрану в сторону меньшего (более отрицательного) водного потенциала. Далее вода поступает в сосуды ксилемы. Согласно гипотезе Крафтса, это следствие выброса солей в сосуды ксилемы, благодаря чему там создается повышенная их концентрация, и водный потенциал становится более отрицательным. Предполагается, что в результате активного поступления соли накапливаются в клетках корня. При этом интенсивность дыхания в клетках, окружающих сосуды ксилемы (перицикл), очень низкая, и они не удерживают соли, которые благодаря этому десорбируются в сосуды. Транспорт воды в корне зависит от интенсивности процесса дыхания.

При помещении растений в условия, тормозящие дыхание корней (низкая температура, анаэробиоз или наличие дыхательных ядов), они транспортируют меньше воды. Предполагают, что это должна быть связано с инактивированием аквапоринов. Торможение транспорта воды в корнях в аэробных условиях, возможно, объясняет факт завядания растений в переувлажненной почве. Дальнейшее передвижение воды идет по сосудистой системе корня, стебля и листа. Проводящие элементы ксилемы состоят из сосудов и трахеид. Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В проводящих элементах ксилемы вода встречает незначительное сопротивление, что, естественно, облегчает передвижение воды на большие расстояния. Правда, неĸᴏᴛᴏᴩᴏᴇ количество воды передвигается и вне сосудистой системы. При этом по сравнению с ксилемой сопротивление движению воды других тканей значительно больше. Это приводит к тому, что вне ксилемы движется всœего от 1 до 10% общего потока воды.

Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся всœе более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Именно в связи с этим густота жилкования листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Вода передвигается от клетки к клетке благодаря градиенту водного потенциала. Передвижение воды от клетки к клетке в листовой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

По сосудам вода движется благодаря создающемуся в силу транспирации гра­диенту водного потенциала, градиенту свободной энергии (от системы с большей свободой энергии к системе с меньшей).

При этом получены экспериментальные данные, которые не позволяют рассматривать силу транспирации как единственную, обуславливающую восходящий ток воды по растению. Так, показано, что восходящий ток воды может осуществляться и при отсутствии транспирации. К этому же выводу приводят опыты, показывающие ритмическое секретирование устьичными клетками жидкой воды, а также зависимость передвижения воды от эндогенной энергии, по­ставляемых процессом дыхания. Это позволяет считать, что движущая сила транспорта воды в растении является суммой двух весьма различных по своей природе составляющих, условно названных метаболической и осмотической

Осмотическая составляющая представлена в корнях сугубо осмотическими явлениями, в стебле и листьях - гидростатической тягой, создаваемой градиентом водного потенциала в системе почва - растение - атмосфера.

Выделœение воды вызывает падение тургора и водного потенциала в целом, создавая предпосылку для поглощения следующей порции воды, вновь приводящего к возрастанию водного потенциала вплоть до того, что он из отрицательного становится положительным. После этого происходит новое сокращение. Именно фаза сокращения происходит с участием контрактильных систем и требует затраты энергии. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вода поглощается и выделяется по градиенту водного потенциала, а не против него, ᴛ.ᴇ. согласно данной схеме, транспорт воды в термодинамическом понимании является пассивным.

Возникающие за счёт ритмической деятельности внутриклеточного сократительного аппарата микроколебания гидростатического давления паренхимных клеток являются механизмом, создающим локальные градиенты водного потенциала на пути водного тока и тем самым регулирующим скорость этого тока. Именно благодаря этому формируется метаболическая составляющая движущей силы транспорта воды в растении, играющая решающую роль в общей системе эндогенной регуляции. Под влиянием ингибиторов контрактильных систем или окислительного фосфорилирования (т. е. при нарушении энерго­снабжения) противофазность исчезает, автоколебания затухают и транспорт воды тормозится.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при нормальном водоснабжении создается непрерывность воды в системе почва - растение - атмосфера. В том случае, в случае если в отдельные членики сосудов попадает воздух (эмболия), они выключаются из общего тока проведения воды.

Поступление воды в растение и передвижение её по растению. - понятие и виды. Классификация и особенности категории "Поступление воды в растение и передвижение её по растению." 2017, 2018.

Путь воды в растении распадается на три различ­ные по физиологии, строению и протяженности части: по живым клеткам корня; по мертвым элементам ксилемы корня, стебля, черешка и жилок; по живым клеткам листа до испаряющей поверх­ности.

Большая часть этого пути приходится на долю водопроводящей системы, состоящей из мертвых по­лых сосудов у покрытосеменных и трахеид у голосе­менных растений. У травянистых растений эта часть водного пути достигает десятков сантиметров, а у дре­весных - многих метров.

Передвижение воды по сосудам ксилемы, длина которых может достигать нескольких десятков санти­метров, происходит довольно легко. Путь через трахеи­ды более трудный: от одной трахеиды к другой вода проходит через окаймленные поры; очевидно, что дви­жение воды через них испытывает большее сопротив­ление, чем через сосуды. Измерения показывают, что у лиственных древесных растений проводимость древе­сины в 3 - 6 раз выше, чем у хвойных. В целом этот путь вода преодолевает куда легче, чем первый и третий через несколько миллиметров или даже долей милли­метров живых клеток - от корневых волосков до сосу­дов центрального цилиндра и от сосудов, расположен­ных в жилках листа, до испаряющих клеток мезофилла.

По сосудам и трахеидам вода передвигается, как по полым трубкам, подчиняясь общим гидродинамичес­ким законам, по живым же клеткам корня и листа - осмотическим путем, с помощью разности сосущих сил соседних клеток в правильно возрастающей последо­вательности. Значительное сопротивление току воды при переходе ее от одной живой клетки к другой дела­ет этот способ совершенно непригодным для передви­жения воды на большое расстояние. Поэтому возник­новение трахеид у папоротниковидных растений яви­лось важным этапом в эволюции растительного мира. Еще более совершенной стала водопроводящая систе­ма с появлением настоящих сосудов у покрытосемен­ных растений.

Через растение перекачивается огромное количество воды. С 1 га посевов пшеницы за лето испаряется около 2 тыс. т, клевера - 7,5, капусты - 8 тыс., Т.е. если собрать всю воду, расходуемую 1 га клевера или капу­сты, то получится водный бассейн площадью 1 га и глубиной 75- 80 см. Еловые молодняки южной тайги за год тратят 4,5 тыс. т воды с 1 га лесной площади, сосно­вые - 5,0, ольховые - до 11 тыс. т.

Видно, что леса расходуют не меньше, а даже боль­ше, чем некоторые сельскохозяйственные культуры. эти колоссальные расходы восполняются за счет деятель­ности корневых систем, с достаточной быстротой вса­сывающих воду из почвы. На этом основана осушаю­щая роль леса в условиях заболачивающихся лесных почв. Поддержанию водного баланса служат и хорошо развитая проводящая воду система, без задержки пода­ющая воду к листьям, а также наличие покровных тка­ней, защищающих растение от излишней потери воды.

Каковы те силы, которые осуществляют непрерыв­ный ток воды от корней через стебель и листья? У тра­вянистых низкорослых растений механизм перетекания ксилемного сока понять легко. Корневое давление наг­нетает воду в сосуды центрального цилиндра корня, а сосущие силы, возникающие в листьях благодаря про­цессу транспирации, притягивают эту воду. Тем самым создается постоянный ток воды по всему растению.

Процесс подъема воды от корней до листьев носит название восходящего тока, в отличие от нисходящего тока органических веществ от листьев к корням. Кор­невое давление, создающееся благодаря метаболизму корневых окончаний, получило название нижнего концевого двигателя водного тока. Притягивающие же воду сосущие силы листьев называют верхним конце­вым двигателем водного тока.

Труднее объяснить непрерывность водного столба у гигантов растительного мира - эвкалиптов, секвой и некоторых других древесных растений, высота кото­рых достигает 140 м. Наши обычные деревья также имеют довольно большие размеры: береза - до 25 м, дуб - 40 м, сосна и ель - до 50 м. К этому следует добавить и значительную протяженность водопроводя­щей системы корней.

Водный ток испытывает и преодолевает силу зем­ного притяжения, силу тяжести. В силу этого, напри­мер, обычные поршневые насосы не могут поднять воду с глубины более 10 м, ибо этот 10-метровый столб воды соответствует давлению в 1 атм. Кроме того, движение воды по ксилеме испытывает довольно значительное сопротивление, особенно у представителей голосемен­ных древесных растений.

Объяснение того, что водный столб протяженно­стью многие десятки метров не разрывается, находим в теории сцепления (когезии) и смачивания стенок со­судов и трахеид водой (адгезии). Действительно, меж­ду молекулами передвигающейся воды существуют значительные силы сцепления, заставляющие эти мо­лекулы следовать друг за другом. Этому способствует и то, что водопроводящие элементы представляют как бы единое целое с водным потоком, так как стенки их полностью смочены, насыщены водой. В них нет воздуха. В таком состоянии они оказывают мини­мальное сопротивление движущемуся потоку. Кро­ме того, само строение сосудов не способствует пе­редвижению пузырьков воздуха из одного сосуда в другой.

Все это весьма сильно отличает условия, создаю­щиеся в дереве, от условий в поршневых насосах. В последних между стенками цилиндра и поршня посто­янно появляются пузырьки воздуха, нарушающие це­лостность водного столба. Происходит обрыв этого столба при подъеме на высоту более 10 м.

Для того чтобы поднять воду на высоту 100 м, необхо­димо наличие сосущих сил в кроне дерева порядка 30 - 35 атм: на преодоление силы тяжести - 10 атм, сопро­тивления фильтрации через поперечные стенки сосу­дов - 20 - 25 атм. В природной обстановке леса такие величины часто регистрируются экспериментально. Поэтому с чисто физической точки зрения представля­ется возможным объяснить подъем воды на высоту 100 м и более.

В процесс е транспирации в листьях деревьев воз­никают сосущие силы, достигающие десятков атмос­фер. Листья насасывают воду из стебля, вследствие чего в сосудах возникает отрицательное давление ­разрежение. Такое состояние можно наблюдать при помощи несложных приборов: в теплый летний день при интенсивной потере воды стволы деревьев умень­шаются в диаметре. Другой способ заключается в том, что при срезании интенсивно транспирирующей вет­ки в подкрашенной воде отмечается мгновенное про­никновение краски через поверхность среза благодаря расширению сосудов.

В зависимости от анатомического строения древе­сины линейная скорость восходящего тока колеблется от 1 - 6 м/ч у хвойных и рассеянно-сосудистых дре­весных пород до 25 - 60 м/ч у кольцесосудистых. Та­кая скорость зарегистрирована летом в полдень. Ско­рость передвижения воды по дереву в течение суток изменяется и в основном соответствует интенсивности транспирации. Существует и светозависимый восходящий водный поток в растениях, тесно не связанный с транспирационной активностью (В.Г. Реуцкий).

В самом дереве быстрее всего вода передвигается в стволе и медленнее - в наиболее молодых ветвях. Среднее положение по этому показателю занимают старые ветви.

Особенности водного тока по стволу дерева:

· С помощью изотопной техники и введения в ствол красок было показано, что у большинства древесных растений водный ток в стволе передвигается по спирали. Это тесно связано с макростроением древесного ствола, что затрудняет ответ на вопрос, какая часть корневой системы питает водой ту или иную сторону кроны дерева.

· Передвижение воды в радиальном направлении осуществляется медленнее и происходит через поры на стенках сосудов и трахеид. Оно имеет зна­чение в поддержании нормальной оводненности живых элементов древесины и коры.

· Неравномерность водного тока. Далеко не вся дре­весина служит местом проведения воды. У ядро­вых древесных растений (сосна, дуб) для этого слу­жит только заболонь. При этом более активны в проведении воды последние годичные слои древе­сины. Это объясняется тем, что только эти слои переходят в древесину однолетних ветвей, тесно связанную с водопроводящей системой листьев. У хвойных, в частности у ели, проводящие пучки хвои сообщаются, по-видимому, с несколькими годич­ными кольцами. Старые годичные кольца просто не достигают кроны, они выклиниваются по мере увеличения высоты дерева. У ряда древесных по­род (акация белая, фисташка, ясень) вода прово­дится всего лишь 1 - 3 последними годичными сло­ями заболони. Такая же картина наблюдается и у заболонных, и у спелодревесных пород (осина, бе­реза, липа), но у них число годичных слоев, прово­дящих воду, несколько больше.

· Можно назвать и такую особенность восходящего тока в стволе дерева, как его изолированность. В общих чертах она присуща и травянистым расте­ниям. Тем не менее, у древесных растений она выражена в большей степени. Проводящая воду древесина ствола отделена от внешней среды не только живыми клетками камбия и флоэмы, но и толстой пробкой или коркой, ограничивающих связь древесины с воздухом атмосферы.

· Такое свойство восходящего тока, как обратu­мость, иногда наблюдается в природе у ряда дре­весных пород, в том числе у некоторых хвойных (ели, пихты), при укоренении нижних ветвей, со­прикасающихся с почвой, или верхушек у выва­ленных деревьев. Ток воды здесь идет в обратном направлении - от морфологически верхнего кон­ца к морфологически нижнему концу.

Восходящий ток обеспечивает все живые клетки растения водой и минеральными элементами. Очень важна роль восходящего тока и в обеспечении живых клеток корней, ствола и ветвей кислородом, ибо проницаемость тканей коры, камбия, древесины для газов весьма низка. Этот растворенный в воде восходящего тока кислород идет на осуществление процесса дыха­ния живых элементов дерева.

Восходящий ток влияет и на оводненность тканей, в частности древесины ствола. В молодом возрасте до образования ядра наибольшей влажностью обладает древесина хвойных пород. Это различие, очевидно, свя­зано с отсутствием у них по сравнению с лиственны­ми породами либриформа.

Резкие изменения оводненности древесины на­блюдаются течение года. Так, у хвойных древесных растений самая низкая влажность отмечается в лет­ние месяцы, а самая высокая - зимой. В поздневе­сеннее и раннеосеннее время влажность древесины занимает среднее положение. Влажность ядровой древесины практически остается неизменной и самой низкой. У лиственных древесных пород отмечено два периода пониженной влажности - летний и во вто­рой половине зимы и два повышенной - весенний во время сокодвижения и зимний - в первой половине зимы.

Влажность древесины молодых деревьев несколь­ко выше, а амплитуда колебаний ее больше, чем у ста­рых деревьев. Содержание воды в древесине меняет­ся и в течение летних суток: наиболее высокое рано утром, а низкое - в полдень.

Вода, запасенная в середине ствола, способна пе­редвигаться в молодые побеги, что особенно важно при отсутствии доступной для растений воды в почве (за­суха, морозы). Например, 100- летняя сосна может пере­носить засушливый период за счет внутренних запа­сов воды в стволе в течение целого месяца.

Перетекающая по растению вода отличается от метаболической воды, которая непосредственно ис­пользуется в различных процессах обмена веществ. Вода постоянно обменивается в клетках растений. С по­мощью современной техники, в частности изотопной, удалось показать, что самый быстрый обмен внутри­тканевой воды на внешнюю воду происходит в корнях растений, а самый медленный - в стеблях. Промежу­точное положение занимают листья.


Похожая информация.


Включает в себя такие понятия, как поступление, движение воды в растениях и испарение ее.

Вода необходима растениям

Передвигается вода в растениях по клеткам коровой паренхимы до центрального цилиндра корня, затем по проводящей системе до листовой паренхимы и, наконец, по клеткам листовой паренхимы. На первом участке пути вода передвигается благодаря повышению сосущей силы клеток корня.


Движение воды от корневого волоска в сторону центральных сосудов

Этот отрезок пути очень небольшой (доли миллиметра), но передвижение воды по этому участку очень затруднено, так как воде приходится преодолевать сопротивление слоев живой протоплазмы . Это сопротивление примерно равно 1 атм на 1 мм пути, поэтому передвижение воды по живым клеткам на более значительные расстояния не обеспечивало бы потребности растения в воде.

Действительно, растения , у которых не развита проводящая система , например мхи, (подробнее: ) имеют незначительные размеры и приспособлены к жизни только во влажных условиях. У наземных растений в процессе эволюции образовалась проводящая ткань, которая устанавливает сообщение между всасывающими воду корнями и испаряющими воду листьями.

Проводящая воду ткань

Проводящая воду ткань состоит из сосудов, или трахей , и трахеидов ; она начинается в центральном цилиндре корня, проходит через весь корень и стебель и заканчивается в виде тончайших разветвлений - жилок, пронизывающих всю листовую паренхиму.

Сосуды представляют собой мертвые трубки, образовавшиеся из живых клеток. В сосудах сохраняются поперечные перегородки на разном расстоянии (от нескольких миллиметров до метра в зависимости от вида растения) одна от другой.

Исчезновение перегородок даже на небольшом расстоянии в тысячи раз ускоряет передвижение воды. Трахеиды это длинные мертвые клетки с заостренными концами. При образовании сосудов и трахеид происходит утолщение и одревеснение их оболочек, вследствие чего они не сдавливаются под давлением окружающих их живых паренхимных клеток.


Движение воды в древесных растениях

Одревеснение, однако, никогда не бывает сплошным: на стенке сосудов остаются тонкие места - поры, по которым вода может перемещаться не только вверх по сосудам, но и в радиальном направлении.

Подъем воды по сосудам

Подъем воды по сосудам можно доказать следующим опытом. Если у срезанной и поставленной в воду ветки снять кольцо коры выше уровня воды, листья ее не завянут, так как сосуды расположены в древесине.

Движение воды по сосудам чаще всего направлено снизу вверх и называется поэтому восходящим током .


Последний отрезок пути водного тока по листовой паренхиме идет по живым
клеткам . Вода передвигается осмотическим путем по клеткам мезофилла листа до последних клеток, граничащих с межклеточниками . Этот отрезок пути, так же как и первый, очень короткий.

Если срезанную ветку растения герметически закрепить в стеклянной трубке, заполненной водой, и нижний конец ее опустить в сосуд со ртутью, то при испарении веткой воды ртуть в трубке будет подниматься.

Из этого опыта ясно, что передвижение воды по растению обусловлено главным образом транспирацией , (подробнее: ), а не только корневым давлением.

При испарении воды с поверхности листьев в клетках возникает сосущая сила. Величина ее тем больше, чем меньше воды остается в клетках листа. Эта возникающая сосущая сила поддерживает постоянное передвижение воды в растении.


Транспорт веществ в растениях

Силы, приводящие воду в движение

Таким образом, силы, приводящие воду в движение , находятся по концам проводящей системы: нагнетающий воду корень, работа которого получила название нижнего концевого двигателя , и сила присасывания воды листьями - верхний концевой двигатель .

Оба двигателя действуют в одном направлении и могут заменять и дополнять друг друга. Во время сильной инсоляции летом и при, засухе водоснабжение растения идет за счет присасывающего действия транспирации.

Корневое давление

Когда же почва богата водой, а воздух водяными парами, подъем воды обеспечивается силой корневого давления, (подробнее: ). Следовательно, в зависимости от условий внешней среды главная роль принадлежит то одному, то другому концевому двигателю.

Водные нити не рвутся под влиянием своей тяжести, несмотря на то, что при сильной они находятся в состоянии натяжения. Это объясняется силой сцепления молекул воды, достигающей 300-350 атм, а так как в сосудах нет воздуха, то целостность водного тока не прерывается.

Скорость водного тока

Скорость водного тока зависит от строения проводящих воду элементов. Вода быстрее передвигается по сосудам, причем скорость движения ее зависит от диаметра сосудов: чем он меньше, тем медленнее будет передвигаться вода.

Движение воды в растениях происходит благодаря работе двух концевых двигателей, верхнего и нижнего, и сил сцепления, обеспечивающих целостность водных нитей.