Горение – сложный физико-химический процесс, основу которого составляют химические реакции окислительно-восстановительного типа, приводящие к перераспределению валентных электронов между атомами взаимодействующих молекул.

Примеры реакций горения

метана : СН 4 + 2О 2 = СО 2 + 2Н 2 О;

ацетилена: С 2 Н 2 + 2,5О 2 = 2СО 2 + Н 2 О;

натрия: 2Na + Cl 2 = 2NaCl;

водорода: Н 2 + Cl 2 = 2НCl, 2Н 2 + О 2 = 2Н 2 О;

тротила: С 6 Н 2 (NO 2) 3 CH 3 = 2,5H 2 O + 3,5CO + 3,5C +1,5N 2 .

Сущность окисления – отдача окисляющимся веществом валентных электронов окислителю, который, принимая электроны, восстанавливается, Сущность восстановления – присоединение восстанавливающимся веществом электронов восстановителя, который, отдавая электроны, окисляется. В результате передачи электронов изменяется структура внешнего (валентного) электронного уровня атома. Каждый атом при этом переходит в наиболее устойчивое в данных условиях состояние.

В химических процессах электроны могут полностью переходить из электронной оболочки атомов одного вещества (элемента) в оболочку атомов другого.

Так, при горении металлического натрия в хлоре атомы натрия отдают по одному электрону атомам хлора. При этом на внешнем электронном уровне атома натрия оказывается восемь электронов (устойчивая структура), а атом, лишившийся одного электрона, превращается в положительно заряженный ион. У атома хлора, получившего один электрон, внешний уровень заполняется восемью электронами, и атом превращается в отрицательно заряженный ион. В результате действия кулоновских электростатических сил происходит сближение разноименно заряженных ионов и образуется молекула хлорида натрия (ионная связь):



2Mg + O 2 = 2Mg 2+ O 2– .

Таким образом, горение магния (окисление) сопровождается переходом его электронов к кислороду. В других процессах электроны внешних оболочек двух разных атомов поступают как бы в общее пользование, стягивая тем самым атомы молекул (ковалентная или атомная связь):

.

И, наконец, один атом может отдавать в общее пользование свою пару электронов (молекулярная связь):



.

Выводы из положений современной теории окисления–восстановления:

1. Сущность окисления заключается в потере электронов атомами или ионами окисляющегося вещества, а сущность восстановления – в присоединении электронов к атомам или ионами восстанавливающегося вещества. Процесс, при котором вещество теряет электроны, называется окислением , а присоединение электронов – восстановление .

2. Окисление какого-либо вещества не может произойти без одновременного восстановления другого вещества. Например, при горении магния в кислороде или воздухе происходит окисление магния и одновременно – восстановление кислорода. При полном сгорании образуются продукты, неспособные к дальнейшему горению (СО 2 , Н 2 О, НСl и т.д.), при неполном – получившиеся продукты способны к дальнейшему горению (CO, H 2 S, HCN, NH 3 , альдегиды и т.д.). Схема: спирт – альдегид – кислота.

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в Данный процесс сопровождается выбросом большого количества Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т. е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.

Образцы выполнения с/р2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА. РАВНОВЕСИЕ. КИНЕТИКА.

ЗАДАЧА 1. Теплота сгорания топлива.

Имеем газовую топливную смесь: 50%СН 4 + 50%С 4 Н 10 .

Суммарный объем V=1000 л=1м 3 .

1. Напишите химические уравнения реакций горения газовых составляющих заданной топливной смеси.

Реакция горения метана:

СН 4 (г) + 2О 2 (г) ® СО 2 (г) + 2Н 2 О (ж)

Реакция горения бутана:

С 4 Н 10 (г) + 13/2О 2 (г) ® 4СО 2 (г) + 5Н 2 О (ж) .

Энтальпия Δ r Н 0 298 этих химических реакций является теплотой сгорания газового топлива ΔН 0 сг.

2. Рассчитайте, сколько теплоты можно получить при сжигании заданного объема топливной смеси заданного состава (объемные %), условия считать нормальными.

С использованием закона Гесса рассчитаем теплоту сгорания газового топлива ΔН 0 сг при стандартном состоянии и 298 К, используя табличные данные (см. приложение, табл.) теплоты образования всех веществ, участвующих в реакции горения (Δ f Н 0 298):

для метана

ΔН 0 сг СН4 = Δ r Н 0 298 = Δ f Н 0 СО2 + Δ f Н 0 Н2О - Δ f Н 0 СН4 - 2Δ f Н 0 О2 =

393,62 + 2 . (-285,84) – (-74,78) - 0 = -802,28 кДж/моль.

для бутана

ΔН 0 сг С4Н10 = Δ r Н 0 298 = 4Δ f Н 0 СО2 + 5Δ f Н 0 Н2О - Δ f Н 0 С4Н10 - 13/2Δ f Н 0 О2 =

4 . (- 393,62) + 5 . (-285,84) – (-126,15) - 0 = -2877,53 кДж/моль.

Удельная теплота сгорания Q Т газового топлива:

Q T = - (ΔН сг. 1000/22,4) , кДж/м 3 ,

где 22,4 л/моль – молярный объем газа при н.у.

для метана

Q T , СН4 = - (-802,28 . 1000 / 22,4) =35816 кДж/м 3 .

для бутана

Q T , С4Н10 = - (-2877,53 . 1000 / 22,4) =128461 кДж/м 3 .

Суммарное количество теплоты, полученное при сгорании данной топливной смеси с учетом объемов газов:

Q = Q T , СН4 . V СН4 + Q T , С4Н10 . V С4Н10 =

35816 . (1 . 0,5)+128461 . (1 . 0,5) =82138,5 кДж.

3. Из заданной топливной смеси выберите наиболее энергоэффективное топливо. Рассчитайте удельную теплоту сгорания этого топлива Q T , кДж/м 3 . Рассчитайте минимальный объем этого топлива для получения 100 МДж теплоты.

Наиболее энергоэффективное топливо в данной топливной смеси – бутан, удельная теплота сгорания Q T , С4Н10 = 128461 кДж/м 3 .

Для получения 100 МДж теплоты необходимо сжечь:

V С4Н10 = Q / Q T , С4Н10 =100000/128461=0,778 м 3 = 778 л.

ЗАДАЧА 2. Химическая термодинамика.

1. Напишите термохимические уравнения реакций, тепловой эффект которых является теплотой образования всех реагентов заданной химической реакции.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

Вещество C (к) – простое, устойчивое при 298 К и давлении 100 кПа, энтальпия его образования DH 0 f , 298 , = 0.

Термохимические уравнения реакций, тепловой эффект которых является теплотой образования реагентов заданной химической реакции СO 2 (г) и CО (г) :

O 2 (г) + C (к) « CО 2 (г) , DH 0 f , 298 = -393,51 кДж/моль,

(см. табл.);

1/2 O 2 (г) + C (к) « CО (г) , DH 0 f , 298 = -110,5 кДж/моль,

(см. табл.).

2. Рассчитайте величины энтальпии D r H 0 298 , энтропии D r S 0 298 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Сделайте вывод о тепловом эффекте реакции.

По табличным данным (см. табл.) запишем термодинамические функции состояния реагентов заданной химической реакции при стандартном состоянии и 298 К

С использованием закона Гесса рассчитаем энтальпию Δ r Н 0 298 , энтропию r S 0 298 и энергию Гиббса Δ r G 0 298 химической реакции при стандартном состоянии и 298 К:

Δ r Н 0 298 = 2Δ f Н 0 298 СОг - Δ f Н 0 298 Ск - Δ f Н 0 298 СО2г =

2(-110,5) – 0 – (-393,5) = 172,5 кДж.

Δ r Н 0 298 >0 - реакция эндотермическая, идет с поглощением теплоты.

r S 0 298 = 2 S 0 f , 298,СО(г) - S 0 f , 298,С(к) - S 0 f , 298,СО2(г) = 2(197,54) – 5,74 – 213,68 =

175,66 Дж/К.

r S 0 298 >0 – система стала более неупорядоченной вследствие образования дополнительного количества газа.

3. Рассчитайте величину энергии Гиббса D r G 0 298 заданной химической реакции (п.1 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Определите, в каком направлении будет самопроизвольно протекать данная реакция при стандартном состоянии всех реагентов и температуре 298 К.

Δ r G 0 298 = 2Δ f G 0 298 СОг - Δ f G 0 298 Ск - Δ f G 0 298 СО2г =

2(-137,14) – 0 – (-394,38) = 120,15 кДж.

Δ r G 0 298 >0 – самопроизвольное протекание реакции в прямом направлении при стандартном состоянии и 298 К невозможно. Реакция протекает в обратном направлении.

4. Определите область температур, при которых возможно самопроизвольное протекание прямой реакции при стандартном состоянии всех реагентов без учета зависимости D r H 0 и D r S 0 от температуры. Постройте график зависимости энергии Гиббса реакции от температуры D r G 0 = f (Т ).

Возможность самопроизвольного протекания реакции при стандартном состоянии определяется неравенством r G 0 T < 0.

Т.е. , если

r G 0 T = ∆ r H 0 298 +∆ r с 0 p dT - Т r S 0 298 - Т r с 0 p / T )dT < 0

r G 0 T ≈ ∆ r H 0 298 - Т r S 0 298 < 0

r G 0 Т = (172,5 – Т . 175,66 . 10 -3) < 0 , отсюда Т > 982 К.

График зависимости D r G 0 = f (Т ):

r G 0 Т

298 982 2300 Т

С учетом температурных интервалов существования реагентов температурная область самопроизвольного протекания реакции при стандартном состоянии 982 < Т < 2300 К.

5. Рассчитайте величину энергии Гиббса D r G 298 химической реакции при заданных значениях парциальных давлений газов (п.2 . табл. к задачам 1, 2) и температуре 298 К. Определите, изменится ли направление протекания процесса при 298 К при изменении парциальных давлений газов по сравнению со стандартным состоянием.

Расчет энергии Гиббса химической реакции при любой температуре и любых относительных парциальных давлениях газов производится по уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln .

Рассчитаем Δ r G 298 при 298 К и давлениях газов: р СО = 2 . 10 3 Па,

р СО2 = 8 . 10 5 Па.

Относительные парциальные давления газов:

СО = 2 . 10 3 Па/10 5 Па = 0,02; СО2 = 8 . 10 5 Па/10 5 Па = 8.

Δ r G 298 = Δ r G 0 298 + RTln (р 2 СО /р СО2) = 120,15 +8,31 . 10 -3 . 298 . ln (0,02/8) =

Δ r G 298 >0 – самопроизвольное протекание реакции в прямом направлении при заданных парциальных давлениях газов и 298 К невозможно. Реакция протекает в обратном направлении.

6. Определите, как нужно (теоретически) изменить парциальное давление любого из исходных газов (р А или р В ) для изменения направления протекания процесса по сравнению со стандартным состоянием при 298 К и стандартном парциальном давлении всех других компонентов химической реакции.

При стандартном состоянии и 298 К возможно самопроизвольное протекание реакции в обратном направлении, т.к. Δ r G 0 298 >0.

Для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К можно изменить парциальное давление СО 2 , (состояние всех других компонентов стандартное). Условием самопроизвольного протекания реакции в прямом направлении является Δ r G 298 < 0.

По уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln< 0

Δ r G 298 = 120,15 + 8,31 . 10 -3. 298 ln < 0

Решаем неравенство ln < - 48,5и получаем: < 10 -21 .

Таким образом,р СО < р СО2 ≈ в 10 5 раз.

Таким образом, для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К и давлении р СО = 10 5 Па нужно увеличить парциальное давление СО 2 в 10 5 раз, т.е. парциальное давление СО 2 должно быть: р СО2 > 10 25 Па.

При таком давлении СО 2 заданная химическая реакция может самопроизвольно протекать в прямом направлении при 298 К.

ЗАДАЧА 2. Химическое равновесие.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

1. Рассчитайте энергию Гиббса D r G 0 Т и константу равновесия К р данной реакции при стандартном состоянии и температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости D r H 0 Т и D r S 0 Т от температуры при постоянной величине удельной теплоемкости веществ с р = const . Постройте график зависимости

К р = f (Т ).

Рассчитаем изменение теплоемкости системы (∆ r c 0 р = const):

r с 0 р = 2с 0 р 298СОг – с 0 р 298Ск – с 0 р 298СО2г =

2 . (29,14)–8,54–37,41 =12,33 Дж/К.

Рассчитаем энергию Гиббса химической реакции при стандартном состоянии и заданных температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости ∆ r H 0 Т и ∆ r S 0 Т от температуры, считая постоянной величину удельной теплоемкости веществ с р , по формуле:

r G 0 T = ∆ r H 0 Т – Т . r S 0 Т = r G 0 298 + r с 0 р (Т - 298) Т . ∆ r с 0 р ln (Т / 298).

r G 0 298 =120,15 кДж;

r G 0 500 =120,15+12,33 . 10 -3 . (500-298) - 500 . 12,33 . 10 -3 . ln (500/298)=

r G 0 800 =120,15+12,33 . 10 -3 . (800-298) - 800 . 12,33 . 10 -3 . ln (800/298)=

r G 0 1000 =120,15+12,33 . 10 -3 . (1000-298) - 1000 . 12,33 . 10 -3 . ln (1000/298) =

Термодинамическое условие химического равновесия: r G T = 0.

Энергия Гиббса химической реакции при стандартном состоянии

r G 0 Т связана с константой равновесия К р по соотношению:

r G 0 Т = - RT lnК р

Рассчитав величину r G 0 T реакции, рассчитаем константу равновесия К р по формуле:

K p = exp(-∆G 0 Т /RT ) ,

где R =8,31 Дж/моль. К - универсальная газовая постоянная.

K p, 298 = exp(-∆G 0 Т , 298 / R . 298) = exp(-120,15/8,31 . 10 -3. 298) =8 . 10 -22 ;

K p, 500 = exp(-∆G 0 Т , 500 / R . 500) = exp(-84,67/8,31 . 10 -3. 500) =1,4 . 10 -9 ;

K p, 800 = exp(-∆G 0 Т , 800 / R . 800) = exp(-31,97/8,31 . 10 -3. 800) =8,1 . 10 -3 ;

K p, 1000 = exp(-∆G 0 Т , 1000 / R . 1000) = exp(3,16/8,31 . 10 -3. 1000) =1,46.

При увеличении температуры увеличивается константа равновесия, что объясняется эндотермическим тепловым эффектом данной реакции

(Δ r Н 0 Т >0).

2. Выберите любую температуру из области самопроизвольного протекания реакции в прямом направлении. При этой температуре рассчитайте равновесные концентрации газообразных реагентов, если их исходные концентрации были равны, соответственно, (см. п.3. табл. к задачам 1,2).

При Т =1000 К реакция протекает самопроизвольно в прямом направлении, т.к. r G 0 1000 = - 3,16 кДж <0, K p , 1000 = 1,46.

Выберем температуру Т =1000 для расчета равновесных концентраций газообразных реагентов, если исходные концентрации газообразных реагентов СО 2 и СО были равны: с СО2 = 0,5 моль/л, с СО =0.

Выражения для констант равновесия, выраженных через относительные равновесные парциальные давления газов (р равн ) и равновесные концентрации (с равн) :

К р =
; К с =

K p и K с связаны через уравнение газового состояния:

K с, 1000 =
=
= 0,018

где R =0,082 л. атм/моль. К - универсальная газовая постоянная;

∆ν = 2-1= 1 (изменение числа молей газообразных веществ в ходе реакции).

Таблица материального баланса:

Подставляем равновесные концентрации газообразных реагентов в выражение для K с и решаем алгебраическое уравнение относительно х :

К с =
= 0,018 , х = 0,0387моль/л

С СО равн = 2 . 0,0387 = 0,0774моль/л

С СО2равн = 0,5 - 0,0387 = 0,4613 моль/л.

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.

Содержание раздела

Горение – процесс быстрого высокотемпературного окисления, сочетающий физические и химические явления. Горение состоит из большого числа элементарных окислительно-восстановительных процессов, приводящих к перераспределению валентных электронов между атомами взаимодействующих веществ – цепная реакция. В процессе цепной реакции возникают свободные атомы, радикалы и другие неустойчивые промежуточные соединения, обладающие повышенной химической активностью – активные центры. Реагируя с исходным веществом, активные центры образуют конечные продукты реакции и новые активные промежуточные центры.

Начальный процесс образования активных центров из исходных веществ называется зарождением цепи. Этот процесс всегда идет с поглощением энергии, т.е. является эндотермическим.

Разветвление цепи происходит в результате реагирования активного центра с исходным веществом, в результате образуется несколько активных центров.

Под обрывом цепи понимают процесс, при котором активный продукт исчезает.

Если скорость разветвления больше скорости обрыва, то происходит развитие цепной реакции. Если скорость обрыва больше, чем скорость разветвления, то реакция не идет. Цепная реакция с неразветвленными цепями характеризуется образованием только одного нового активного центра – результат взаимодействия существовавшего активного центра с исходным веществом. Цепная реакция с разветвляющимися цепями характеризуется образованием нескольких активных центров (взамен израсходованного), что приводит к значительному ускорению реакции. К обрыву цепи может привести столкновение активных центров: между собой, с молекулами инертного вещества, со стенкой топки, со стенкой теплообменного устройства.

Наиболее простым является механизм реакции окисления (горения) водорода, а наиболее сложным – окисление углеводородов. Окисление водорода относится к цепной реакции с разветвляющимися цепями и состоит из следующих элементарных стадий:

1. H 2 + O 2 → H + H 2 O – зарождение цепи

2. H + O 2 → OH + O – разветвление цепи

3. O + H 2 → OH + H – продолжение цепи

4. OH + H 2 → H 2 O + H – продолжение цепи

5. H + стенка → (1/2) H 2 – обрыв цепи на стенке

6. H + O 2 + M → H 2 O + M – обрыв цепи в объеме

В результате взаимодействия атома водорода с молекулой кислорода получаются 2 молекулы воды и 3 новых атома водорода (активные центры), т.е. цепная реакция является разветвленной. Скорость цепных реакций очень чувствительна к посторонним примесям и к форме сосуда (топки).

О завершении процесса горения судят по анализам продуктов сгорания, выполняемых с использованием газохроматографического метода исследований (определение избытка воздуха, с которым работает горелка, может производиться двумя методами: по анализу газовоздушной смеси в смесителе горелки и по анализу продуктов сгорания).

На интенсивность горения топлива могут оказывать влияние следующие факторы:

Повышение температуры реагирующих веществ – топлива и окислителя. При повышении температуры на каждые 10° скорость реакции возрастает в 2–4 раза – правило Вант-Гоффа. (Воздействие температуры на реакции изучает особый раздел химии – «Термохимия»).

Фотохимическое действие света, заключающееся в том, что молекулы реагирующих веществ, поглощая кванты света, возбуждаются, т.е. становятся более реакционноспособными. (Воздействие света видимого, ультрафиолетового на реакции изучает – «Фотохимия»).

Ионизирующее излучение – (изучает – «Радиационная химия»).

Давление – (изучает – «Химия сжатия»).

Механическое воздействие. Механохимическим актом является разрыв химических связей в веществе под действием механических сил (дробление, перетирание и др.). Возникающие при этом «осколки» молекул повышают реакционноспособность веществ. (Химические процессы, происходящие под действием механических сил, изучает «Механохимия»).

Каталитическое воздействие. Катализаторы – это вещества, изменяющие скорость реакции. В присутствии катализатора изменяется путь, по которому происходит суммарная реакция. Так, реакция окисления CO кислородом 2CO + O 2 = 2CO 2 в значительной степени ускоряется в присутствии паров воды, это вызвано развитием цепей с участием свободных радикалов OH и H:

OH + CO → CO 2 + H – зарождение цепи

H + O 2 → OH + O – продолжение цепи

CO + O → CO 2 – продолжение цепи

В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный.

Химические реакции, происходящие между веществами, находящимися в одной фазе, называют гомогенными, в разных фазах – гетерогенными.

Горение твердого топлива состоит из подогрева, испарения влаги, возгонки летучих, образования кокса, окисления летучих, окисления кокса – гетерогенный процесс.

Горение жидкого топлива состоит из нагрева, кипения, испарения, окисления – гетерогенный процесс.

Горение газообразного топлива состоит из двух стадий: подогрева и окисления – гомогенный процесс.

Горение газа

Процесс горения газообразного топлива сопровождается быстрым окислением простых горючих газов и пирогенетическим разложением сложных газов. Пирогенетическое разложение протекает с выделением сажистого углерода и с образованием быстро окисляющихся низкомолекулярных соединений. Сажистый углерод в факеле придает пламени окраску и делает его светящимся. При предварительном смешении воздуха с простыми газами (CO, H 2) пирогенетическое разложение отсутствует и смесь горит прозрачным пламенем. Присутствие в смеси инертных газов N 2 и CO 2 повышает температуру воспламенения, а кислород – понижает; с повышением давления температура воспламенения понижается.

Температуру воспламенения смесей горючих газов ориентировочно можно рассчитать по формуле:

t воспл.см ≈ 0,01 (at a + bt b + ct c + …)

где: a, b, c – содержание горючих газов, %;

t a , t b , t c – температуры воспламенения газов, °С.

Скорость воспламенения зависит также от состава газов и обычно не превышает 10 м/сек.

При горении газообразного топлива в некоторых условиях возможен взрыв, особенно при быстром воспламенении горючей смеси определенного состава в небольшом объеме. Тепло, выделяющееся при этом, почти полностью расходуется на нагрев продуктов горения, быстрое расширение которых вызывает сжатие окружающего слоя. При большой скорости воспламенения сжатие не успевает распространяться по всему объему пространства и локализуется. Это вновь вызывает сжатие и расширение, т.е. образуется взрывная волна, распространяющаяся со скоростью 2000–3000 м/сек.

Взрывная волна образуется не только от нагревания, но и в результате электрохимических процессов. Предупредить образование взрывоопасной смеси можно надежной герметизацией газопроводных устройств, положительным давлением газа в газопроводе и полным исключением возможности воспламенения смеси.

Таблица 7.1. Скорость распространения пламени в смесях горючих газов с воздухом
Газ Стехиометрическая смесь Смесь, в которой скорость имеет

максималь­ное значение

Содержание, об. % И н, см/с Содержание, об. % И н max ,
газа воздуха газа воздуха
Водород 29,5 70,5 160–180 42–43 57–58 265–267
Окись углерода 29,5 70,5 28–30 43–52,5 47,5–57 41–46
Метан 9,5 90,5 28–37 9,5–10,5 89,5–90,5 37–38
Пропан 4,03 95,97 40,6–40,8 4,26 95,74 42,9–43,2
Бутан 3,14 96,86 34 3,3 96,7 37
Ацетилен 7,75 92,25 100–128 10–10,7 89,3–90 131–157
Этилен 6,54 93,46 60–63 7,0–7,4 92,6–93 63–81

Горение мазута

Процесс горения мазута более сложен по сравнению с процессом горения газообразного топлива. Сжигание мазута с помощью горелок условно можно разделить на несколько взаимосвязанных друг с другом стадий:

Распыление мазутной струи;

Смешение мелких капель мазута с воздухом;

Нагрев аэросмеси до температур испарения мелких капель; пирогенетическое разложение молекул углеводородов и воспламенение образовавшихся газов;

Смешение газов, парообразных и твердых продуктов разложения (сажистого углерода) с воздухом в горящем факеле и их окисление (горение).

Чем тоньше распыление мазута, тем лучше протекают процессы смешения мелких капель с воздухом, подогрев и воспламенение подготовленной для горения смеси топлива с воздухом.

При факельном сжигании мазута скорость выгорания частиц топлива, движущихся в потоке аэросмеси, зависит от трех факторов:

Тонкости распыления мазута;

Условий смешения распыленного мазута с воздухом;

Условий подвода тепла к начальной части факела, необходимого для стабилизации воспламенения горючей смеси, выходящей из форсунки.

При подогреве мазутных капель, находящихся в потоке аэросмеси, протекают процессы, связанные с испарением жидкости и расщеплением углеводородов. Испарение начинается при 150 °С с выделением легких фракций. При температурах выше 350 °С и недостатке воздуха начинается расщепление частиц с образованием легких и тяжелых углеводородов. При температурах выше 650 °С, молекулы углеводородов распадаются с образованием высокомолекулярных углеводородов и твердого остатка в виде сажистого углерода.

Высокомолекулярные углеводороды и сажистый углерод, дающий коптящее пламя, сгорают с трудом. Для сжигания одной молекулы продукта распада углеводородов в виде (C 18 H 2) 2 требуется 37 молекул кислорода. Следовательно, если при движении потока горючей смеси капли мазута сразу попадут в зону высоких температур факела, то они будут быстро нагреваться и при расщеплении выделять трудносгораемые продукты, которые, не догорая, будут удаляться вместе с дымовыми газами.

Особенно неблагоприятно для полного горения неравномерное распределение кислорода в аэросмеси, которое наблюдается при подаче струи мазута по оси факела, при больших потерях скоростного напора воздуха в выходном отверстии мазутной горелки и плохом смешении аэросмеси топлива в процессе горения за горелкой.

Для улучшения процессов горения мазута большое значение имеют подготовительные стадии, проводимые перед сжиганием, например: подогрев мазута при подаче в горелки, предварительное его смешение с воздухом или паром для получения мазутной эмульсии до подачи в горелки, предварительная газификация мазута за счет неполного сжигания в горелочной камере с последующим дожиганием полученного газа в топочном пространстве.

Предварительная газификация мазута за счет неполного сжигания, а также предварительная подготовка мазутной эмульсии в смеси с водой, паром или сжатым воздухом до подачи в горелочное устройство существенно изменяют процесс горения жидкого топлива в факеле, приближая его к процессу горения газообразного топлива.

Горение твердого топлива

Гетерогенный процесс горения (окисления) твердого топлива наиболее сложен (о последовательности отдельных стадий горения твердого топлива было упомянуто выше). Скорость гетерогенной реакции в данном случае измеряется количеством углерода, сгоревшего в единицу времени на единице активной поверхности топлива (площади). Скорость этой реакции зависит от температуры, давления, концентрации реагирующих веществ и от продолжительности диффузии окислителя к активной поверхности.

Продолжительность диффузии в свою очередь зависит: от температуры, от разности концентраций окислителя в потоке и на поверхности частицы, от толщины пограничного слоя.

Пограничный слой образуется вблизи поверхности частиц топлива из-за уменьшения реагирующих веществ, вследствие увеличения концентрации продуктов горения (СО и СО 2). Этот пограничный слой газа толщиной «б» препятствует подводу кислорода к поверхности частицы. Толщина пограничного слоя зависит от скорости потока и от приведенного диаметра частицы топлива.

В результате скорость горения твердого топлива определяется тем, какой из составляющих процессов – диффузия или собственно окисление – является лимитирующим.

Сжигание твердого топлива в слое на колосниковой решетке имеет много недостатков, главные из них состоят в том, что трудно получить высокие температуры горения топлива и автоматизировать процессы горения и тепловой режим котла.

Твердое топливо в большинстве случаев перерабатывают на пылевидное или газообразное путем газификации. Пылевидное топливо сжигается факельным способом. При факельном способе сжигания требуется меньше избыточного количества воздуха для полноты горения по сравнению со слоевым способом.

При сжигании угольной пыли коэффициент избытка воздуха принимается не более 1,20–1,25. При этом значительное количество воздуха, необходимого для горения, можно подавать подогретым до высокой температуры. Процессы горения угольной пыли легче автоматизировать.

Реакции горения углерода, серы, углеводородов

Горение углерода

С+О 2 = СО 2

1моль (молекула)+1 моль= 1 моль

1объемная часть+1 объемная часть= 1 объемная часть (полное сгорание)

12 массовых частей+32 массовые части= 44 массовые части

Горение окиси углерода

2СО+О 2 = 2СО 2

2 моля +1 моль= 2 моля

2 объемные части+1 объемная часть= 2 объемные части (полное сгорание) 56 массовых частей+32 массовые части= 88 массовых частей

Горение серы

S +О 2 = SО 2

1 моль+1 моль= 1 моль

1 объемная часть+1 объемная часть= 1 объемная часть

32 массовые части+32 массовые части= 64 массовые части

Горение водорода

2H 2 +О 2 = 2 H 2 O

2 моля+1 моль= 2 моля

2 объемные части +1 объемная часть= 2 объемные части

4 массовые части+32 массовые части= 36 массовых частей

Горение углеводородов

C m H n +(m + n/4 )O 2 = m CO 2 + n/2 H 2 O

1 моль +(m + n/4 ) молей= m молей + n /2 молей

1 объемная часть +(m + n/4 ) объемных частей= m объемных частей + n /2 объемных частей

12 m + n массовых частей + 32 (m + n/4 ) массовых частей= 44 m массовых частей + 9 n массовых частей

Таблица 7.2. Атомные массы химических элементов Таблица 7.3. Скорость горения со свободной поверхности