До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F T = mg, где g = GM/R 2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*10 21 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, - рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

Предстоящий полет человека на Марс всколыхнул все земное сообщество, став самой обсуждаемой темой за последние полвека. Это и вправду знатное событие в истории земной цивилизации, от которого мы ждём не только колонизации Марса, но также эволюционного витка к «человеку космического масштаба «.

Марсианские города — будущее Четвертой планеты

Отправляясь в путешествие по неизведанным дорогом, надо оценивать и опасность задуманного предприятия. Космос не любит торопливых, ведь хорошо известно — космическое пространство не отличается покладистостью доброго нрава.

Большинство проблем, связанных с большой продолжительностью космического полета (без учета радиационных влияний) уменьшаются или устраняются с помощью искусственной гравитации.
Тогда как неблагоприятное влияние отсутствия гравитации и влияние радиационной обстановки выступают крупнейшими препятствиями на пути освоения Солнечной системы.

Передовые позиции в изучении Марса занимает NASA, активно наступающая на территории Красной планеты. Подобную миссию преследует «Элон Маск и К°», сосредоточив серьёзные мощности на .

Но ведь если кто-то хочет выйти за пределы низкой околоземной орбиты, то Луна представляется более очевидным выбором, поскольку низкие эффекты гравитации могут быть исследованы более тщательно, причём в трёх днях пути от дома.

Наша ближайшая соседка отличное место для тестирования технологий длительных полётов в космосе, не так ли? На Луне можно хорошо «обкатать» и доработать по максимуму конструкции обитаемых баз в условиях чуждой окружающей среды.
И ещё момент — при отработке лунных задач, конструкции космических аппаратов могут найти более совершенные технологии для длительных путешествий. Вы согласны с этим?

Так почему же НАСА не желает вернуться на Луну, отдавая предпочтение человеческому присутствию на Марсе? Почему Space X, так настойчиво игнорирует Луну, устремляясь к Марсу?

Впрочем, мы сейчас не преследуем цели теории заговора, якобы: «там явно что-то знают о катастрофе идущей на Землю», поэтому они хотят уйти на Красную планету. Нам просто интересен вопрос дальних странствий.

Слабое притяжение искусственной гравитации.

Концепция искусственной гравитации вызывается в воображении кадрами гигантских вращающихся модулей космических станций, как например в «Космической Одиссее 2001». Это выглядит самым приемлемым решением в плане длительных космических полётов. Да, это взгляд на вопрос глазами не специалиста, но потенциального путешественника.

Однако, создание даже примитивных конструкций, для получения искусственной силы тяжести, видимо более сложная задача, чем та, что НАСА или Space X готово решить при современном уровне технологий.

Невесомость может быть, как восхитительна, так и коварна. С одной стороны, это позволяет астронавтам совершать невозможные на Земле вещи: например, перемещение крупногабаритного оборудования лёгким движением руки. И, конечно же, представляет серьезный интерес для ученых: начиная от биологии до материальных наук гидродинамики.

Длительное пребывание человека в условиях невесомости изучалось в течение многих десятилетий, и вывод тревожен — серьезные последствия для здоровья космонавтов. Исследователи набрали , от хрупкости костей и потери мышечной массы до утери зрения.

НАСА планирует космические полеты за пределы околоземной орбиты, на Марс, длительностью от шести до девяти месяцев. Там разрабатывают способы по устранению последствий невесомости. Противоборство в основном заключается в составлении ежедневных часовых упражнениях, что является приоритетом для агентства.

Да, специалисты разрабатывают комплекс упражнений для противодействия невесомости, вымывающий кальций из костей. При этом никто не ведет эксперименты с контрмерой — созданием гравитации. А ведь это давно предложено в качестве средства для обеспечения по меньшей мере частичной тяжести, возможно достаточной, для снятия проблем со здоровьем.

Тем не менее, как это ни удивительно, искусственная гравитация является низким приоритетом в НАСА и Space X. Может быть, агентства еще не готовы в полной мере выйти в космос, слишком торопятся, отправляя людей и в без того опасный путь?

Ни один космический корабль марсианской миссии с человеком на борту, не предусматривает вращающихся конструкций в той или иной форме, для создания эффекта гравитации.
Даже гигантский космический аппарат «Межпланетная транспортная система Space X», запланированный перевозить 100 человек разом, не создаёт искусственную силу тяжести, — а ведь в сущности, это уже обитаемая станция в космосе.

Специалисты о проблеме гравитации говорят:

Майкл Барратт, астронавт НАСА и врач, пояснил причины, почему агентство не приняло искусственную гравитацию как меру противодействия невесомости: Мы можем сохранить кости и мышцы, сердечно-сосудистую систему в порядке, сказал он в ходе конференции 2016 года в сентябре в Лонг-Бич, штат Калифорния. Мы не нуждаемся в искусственной гравитации.

Точку зрения астронавта поддержали руководители НАСА: Потеря костной ткани, потеря мышечной массы, работа вестибулярного аппарата, это те виды вещей, чью нормальную работу мы можем контролировать с помощью упражнений, говорит Билл Герстенмайер.

Элон Маск, представляя проект марсианской миссии, не был озабочен проблемой невесомости, отклоняя создание местной гравитации для экипажа кораблей. «Я думаю, что вопросы по существу проблемы решены», считает вдохновитель Space X.
Попутно говоря, что длительных полетов на МКС намного больше, чем время в запланированном путешествии на Марс.

Техническая реализация искусственной гравитации.

Тем не менее, эксперты рассматривали варианты по созданию силы тяжести. Серьёзной проблемой выступает техническая сторона проекта космического корабля, реализующего идею искусственной гравитации, либо посредством вращающегося модуля, либо созданием некой центрифуги.

«Мы рассмотрели много конструкций транспортных средств, пытаясь обеспечить искусственную гравитацию различными способами. На самом деле, это просто не работает, — поясняет Герстенмайер. Это существенная модернизация космического аппарата. Очень большая работа, тогда как есть задача просто попасть на Марс.

Хуже того, полагают специалисты: включение одной секции корабля поддерживающую силу тяжести, может создать новую череду проблем, потому что астронавты должны будут регулярно реадаптироваться между невесомостью и силой тяжести.

В свою очередь, это может спровоцировать синдром адаптации пространства. Астронавтам придётся пересекать зоны с невесомостью и гравитацией по нескольку раз в сутки, что может быть более проблематичным, чем просто пребывание в невесомости.

Баррет отметил, что он и его коллеги имеют технические озабоченности по поводу конструкции космических аппаратов, реализующих искусственную гравитацию. Космонавты боятся искусственной гравитации. Почему? Мы не любим большие движущиеся части.

Проблемы со зрением отмечали у некоторых астронавтов, что может привести к переоценке важности искусственной гравитации. В то же время, причина нарушения зрения не известна, и нет гарантии, что сила тяжести сможет устранить проблему.

Есть много идей о том, почему это происходит. Одним из факторов является повышение уровня углекислого газа, полагают специалисты. Так, уровень углекислого газа на МКС в десять раз выше, чем в нормальных атмосферных условиях на Земле.

— Скорее всего, отсутствие гравитации связано с недостатком технологий, которых для решения вопроса на сегодня попросту нет. Ведь даже Герстенмайер, несколько скептически относясь к необходимости силы тяжести, не исключает этого полностью.
Да, как мы теперь понимаем гравитация на космических кораблях-станциях дело технологий будущего.

Сегодня же, участники марсианской гонки стремятся первыми прибыть на Марс и развернуть там хоть что-то пригодное для жизни.
Человечеству нужен подвиг: ослабленные долгим перелетом, на чужой планете, в непригодной для жизни атмосфере, — колонисты будут строить убежища, и выстраивать жизнь на Красной планете.
Но кто-нибудь, может мне сказать, к чему такая спешка, когда наступление похоже на бегство?

> > > Гравитация на Марсе

Какая гравитация на Марсе по сравнению с Землей: описание показателей для планет Солнечной системы с фото, влияние на организм человека, вычисление гравитации.

Земля и Марс во многом похожи. Они практически сходятся по площади поверхности, обладают полярными шапками, осевым наклоном и сезонной изменчивостью. К тому же обе показывают, что прошли сквозь климатические перемены.

Но они и отличаются. И одним из важнейших факторов выступает гравитация . Поверьте, если вы собираетесь колонизировать чужой мир, то этот момент сыграет важную роль.

Сравнение гравитации на Марсе и Земле

Мы знаем, что земные условия помогли сформироваться жизни, поэтому используем их в качестве ориентира при поиске чужой. Атмосферное давление на Марсе – 7.5 миллибар против 1000 земного. Средний показатель температуры поверхности опускается к -63°C, а у нас – 14°C. На фото отобразили строение Марса.

Если длина марсианского дня почти сходится с земным (24 часа и 37 минут), то год охватывает целых 687 дней. Марсианская гравитация на 62% ниже земного показателя, то есть 100 кг там переходят в 38 кг.

На подобное отличие влияют масса, радиус и плотность. Несмотря на схожесть в площади поверхности, Марс охватывает лишь половину земного диаметра, 15% от объема и 11% массивности. А что с силой тяжести Марса?

Вычисление гравитации Марса

Для определения марсианской гравитации исследователи использовали теорию Ньютона: гравитация выступает пропорциональной массе. Мы сталкиваемся со сферическим телом, поэтому гравитация будет обратно пропорциональная квадрату радиуса. Ниже представлена карта гравитации Марса.

Пропорции выражаются формулой g = m/r 2 , где g – поверхностная гравитация (кратная земной = 9.8 м/с²), m – масса (кратная земной = 5.976 · 10 24 кг), а r – радиус (кратный земному = 6371 км).

Марсианская масса – 6.4171 х 10 23 кг, что в 0.107 раза больше нашей. Средний радиус – 3389.5 км = 0.532 земного. Математически: 0.107/0.532² = 0.376.

Мы не знаем, что случится с человеком, если его окунуть в подобные условия на длительный срок. Но изучение воздействия микрогравитации показывает потерю мышечной массы, плотности костей, удары по органам и снижение зрения.

Прежде чем отправляться на планету, мы должны детально изучить ее гравитацию, иначе колония обречена на гибель.

Уже есть проекты, которые занимаются этим моментом. Так Марс-1 разрабатывает программы по улучшению мускулатуры. Пребывание на МКС дольше 4-6 месяц показывает потерю мышечной массы на 15%.

Но марсианская займет намного больше времени на сам полет, где корабль атакуется космическими лучами, и пребывание на планете, где также нет защитного магнитного слоя. Экипажные миссии 2030-х гг. все ближе, поэтому мы должны поставить решение этих вопросов в приоритет. Теперь вы знаете, как выглядит гравитация на Марсе.

Like Love Haha Wow Sad Angry

21 марта 2016 года NASA представило на своем сайте новую наиболее подробною на сегодняшний день карту гравитации Марса, позволяющую заглянуть в скрытый интерьер Красной планеты.

«Гравитационные карты позволяют нам заглянуть внутрь планеты, подобно рентгену, который использует врач, чтобы увидеть внутренности пациента. Новая гравитационная карта будет полезна для будущего исследования Марса, потому что знания о гравитационных аномалиях помогут будущим миссиям более точно выходить на орбиту планеты. Кроме того, улучшенное разрешение нашей карты поможет понять тайны формирования некоторых регионов Марса», – сказал Антонио Дженова из Массачусетского технологического института, ведущий автор публикации об исследовании.

Улучшенная гравитационная карта предлагает новое объяснение того, как формируются некоторые особенности границы, отделяющей относительно пологие северные низменности от сильно кратерированного южного нагорья. Также команда исследователей путем анализа приливов в марсианской коре и мантии, вызванных гравитационным притяжением Солнца и двух спутников, подтвердила, что Марс имеет жидкое внешнее каменное ядро. И, наконец, наблюдая за изменением гравитации Марса в течение последних 11 лет, команда обнаружила огромное количество углекислого газа, который вымораживается из атмосферы над марсианскими полярными шапками в зимний период.

Карта марсианской гравитации. Взгляд на Северный полюс. Белым и красным цветом обозначены регионы с наибольшей гравитацией. Синий цвет обозначает районы с более низкой гравитацией. Credits: MIT/UMBC-CRESST/GSFC

Карта была получена с помощью сети из трех космических аппаратов, кружащих на орбите Марса: Mars Global Surveyor (MGS), Mars Odyssey (ODY) и Mars Reconnaissance Orbiter (MRO). Как и на других планетах, сила притяжения Марса ощущается космическими аппаратами, и их орбита немного изменяется. Например, притяжение над горой будет немного сильнее, а над каньоном – чуть слабее.

Незначительные изменения траектории полетов аппаратов фиксировались и отсылались на Землю. Именно эти колебания использовались для построения карты гравитационного поля Красной планеты.

Карта марсианской гравитации. Взгляд на Южный полюс. Белым и красным цветом обозначены регионы с наибольшей гравитацией. Синий цвет обозначает районы с более низкой гравитацией. Credits: MIT/UMBC-CRESST/GSFC

«С новой картой мы смогли увидеть малые гравитационные аномалии около 100 километров в поперечнике. Мы определили мощность коры Марса с разрешением примерно 120 километров. Лучшее разрешение поможет интерпретировать, как кора планеты изменялась во многих регионах за марсианскую историю», – добавил Антонио Дженова.

Например, область с более низкой гравитацией между Acidalia Planitia и Tempe Terra объясняется системой подземных каналов, которые доставили воду и отложения из южного нагорья к северной низменности миллиарды лет назад, когда марсианский климат был влажным.

Карта марсианской гравитации, показывающая вулканический регион Tharsis. Синие регионы с наименьшей гравитацией могут быть трещинами в литосфере Марса. Credits: MIT/UMBC-CRESST/GSFC

Альтернативное объяснение этой аномалии заключается в том, что она может быть связана с прогибом или изгибом литосферы, внешнего слоя Марса, в связи с образованием области Tharsis. Эта область представляет собой вулканическое плато, простирающееся на тысячи километров и содержащее крупнейшие вулканы в Солнечной системе. Когда вулканы росли, литосфера прогибалась под их огромным весом.

Новая гравитационная карта позволила команде подтвердить мнение, что Марс имеет внешнее жидкое каменное ядро, а также уточнить измерения марсианских приливов и отливов.

Изменения в марсианской гравитации ранее измерялись миссиями MGS и ODY по наблюдению за полярными льдами. MRO был впервые применен для мониторинга массы планеты. Ученые определили, что в зимний период из атмосферы вымораживается 3-4 триллиона тонн углекислого газа, из которого и формируются полярные шапки. Это примерно от 12 до 16 процентов массы всей атмосферы Марса.

Like Love Haha Wow Sad Angry

Роман Захаров
главный редактор

С технической точки зрения полет человека на Марс представляется на нынешнем этапе развития космонавтики не более сложным мероприятием, чем в свое время экспедиция на Луну . Специалисты считают, что сама техника практически готова к организации первой межпланетной экспедиции. Но прежде чем марсианская пилотируемая миссия состоится, ученым предстоит решить многочисленные медико-биологические проблемы. Более того, сегодня уже очевидно, в разработке стратегии марсианского проекта человеческий фактор будет главным приоритетом, а человек — наиболее уязвимым звеном миссии, в значительной степени определяющим саму возможность ее реализации.

Медико-биологическое обеспечение марсианской пилотируемой экспедиции является новой задачей для ученых. Использование многих хорошо себя зарекомендовавших принципов, методов и средств медико-биологического обеспечения орбитальных пилотируемых полетов для марсианской миссии неприемлемо. Среди особенностей межпланетного полета — в частности, иные условия коммуникации с Землей, чередование гравитационных воздействий и ограниченный период адаптации к гравитации перед началом деятельности на поверхности Марса, повышенная радиация, отсутствие магнитного поля.

Выполненный еще в конце прошлого века 438-суточный орбитальный полет на станции «Мир » врача-космонавта Валерия Полякова показал отсутствие принципиальных медико-биологических ограничений для длительных космических миссий. В настоящее время не выявлено существенных изменений в организме человека, которые могли бы препятствовать дальнейшему планомерному увеличению продолжительности космических полетов и выполнению марсианской экспедиции, — подчеркивает директор Института медико-биологических проблем академик Анатолий Григорьев .

Иное дело проблема защиты космонавтов от галактического и солнечного космического излучения, которые значительно возрастут за пределами земной магнитосферы. За два года полета суммарная доза радиации может в два раза превысить допустимую. Поэтому предстоит разработать специальную противорадиационную защиту. В настоящее время разработчики склонны отдать приоритет конструкционной защите: баки с топливом, водой и другими запасами располагаются вокруг жилого отсека. При этом обеспечивается защита примерно в 80—100 г/см 2 .

Космонавты могут серьезно облучиться и когда будут находиться на поверхности Марса. Измерения, выполненные российским прибором ХЕНД, установленным на американском аппарате Mars Odyssey , показали, что во время солнечных вспышек интенсивность потока нейтронов, отраженных от поверхности планеты, может возрастать в несколько сотен раз и достигать смертельных для космонавтов доз. Следовательно, они могут высаживаться на марсианскую поверхность только в периоды солнечного «затишья».

Другая проблема — питание космонавтов. Казалось бы, практика отработана годами. Экипаж космического корабля ждут те же, что и сегодня, сублимированные (высушенные) продукты. Достаточно добавить воды, разогреть — и на стол. Однако, как бы ни были хороши и вкусны эти продукты, их необходимо разнообразить более привычной пищей. Идея завести на корабле птиц, чтобы космонавты питались яйцами, отпала. Как показали эксперименты, новорожденные птенцы так и не смогли адаптироваться к невесомости. Проще оказалось с рыбами и моллюсками, но они растут слишком медленно, и вряд ли космонавты смогут питаться свежей рыбой на пути к Марсу. Что можно сказать с полной уверенностью — на борту межпланетного корабля будет оранжерея. Правда, небольшая.

Специалистами Института медико-биологических проблем сконструирован прототип «космического огорода». Он представляет собой цилиндр, в котором помещена связка валиков, пропитанных удобрениями. Внутренняя его поверхность покрыта сотнями красных и синих диодов, играющих роль солнечных лучей. Валики поворачиваются по мере роста растений, приближая их верхушки к источнику света. Пока на одних валиках зелень только прорастает, с других уже можно снимать урожай. Опытный образец установки позволяет получать около 200 граммов зелени каждые четыре дня. С увеличением числа валиков и источников света производительность машины возрастает. Помимо обеспечения едой «космическое сельское хозяйство» поможет решить и проблему регенерации атмосферы на борту межпланетного корабля.

Далее, — проблемы воды. Подсчитано, что в сутки космонавту требуется 2,5 литра воды. Так что несколько ее тонн на борту должно быть. Часть воды с помощью систем регенерации будет возвращаться в оборот. Идеальный вариант — создание на корабле замкнутых физико-химических систем, с помощью которых достигается полный круговорот веществ. Но, по-видимому, это — дело достаточно отдаленного будущего.

Есть задачи и психологического характера. Из-за большого расстояния до Марса радиосигнал только в одну сторону будет распространяться 20—30 мин. Центру управления просто не хватит времени, чтобы вмешаться при возникновении нештатных ситуаций. Земля, в лучшем случае, станет консультантом, а основной процесс принятия решений переместится на борт корабля.

И, прежде чем стартует марсианская пилотируемая экспедиция, многие из этих проблем ученые попытаются разрешить в ходе российского эксперимента «Марс-500». Это будет не настоящий полет, но очень точная его имитация: экипаж из шести человек проведет 520 дней в наземном комплексе, состоящем из пяти герметичных, сообщающихся между собой модулей. Один из них будет имитировать поверхность Марса.

Модули напичканы аппаратурой, регистрирующей всевозможные параметры внутри них и отслеживающей медицинские показатели у испытателей. Для ученых важно будет понять, как действуют люди в команде в обстановке, приближенной к условиям марсианского полета. Все результаты — от того, как складывались отношения в коллективе, до рациона питания — будут анализироваться специалистами. Это позволит учесть максимум возможных ситуаций, которые могут возникнуть в реальном полете, и способствовать их разрешению.

На сегодняшний день желающих участвовать в «наземном межпланетном полете» набралось уже достаточно много — в основном мужчины. В какой-то степени это объяснимо: уже выяснилось, что у женщин по физиологическим и психологическим качествам гораздо меньше шансов, чем у мужчин, первыми ступить на Марс. В эксперименте будут участвовать шесть человек, хотя в реальном полете к планете в состав экспедиции войдут только четыре человека.

Примечательно, что вскоре, после того как в России было объявлено об эксперименте «Марс-500», в США также стали набирать добровольцев для имитационного полета. Правда, испытатели проведут в нем лишь четыре месяца.