Горение природного газа представляет собой сложный физико-химический процесс взаимодействия горючих его составляющих с окислителем, при этом происходит преобразование химической энергии топлива в тепло. Горение бывает полным и неполным. При перемешивании газа с воздухом, достаточно высокой для горения температуры в топке, непрерывной подаче топлива и воздуха осуществляется полное сгорание топлива. Неполное сгорание топлива происходит при несоблюдении этих правил, что приводит к меньшему выделению тепла, (СО), водорода (Н2), метана (СН4), и как следствие, к оседанию сажи на поверхностях нагрева, ухудшая теплообмен и увеличивая потери количества тепла, что в свою очередь приводит к перерасходу топлива и снижению КПД котла и соответственно к загрязнению атмосферы.

Коэффициент избытка воздуха зависит от конструкции газовой горелки и топки. Коэффициент излишка воздуха должен быть не менее 1, иначе это может привести к неполному сгоранию газа. А также увеличение коэффициента избытка воздуха снижает КПД теплоиспользующей установки за счет больших потерь теплоты с уходящими газами.

Определяется полнота сгорания с помощью газоанализатора и по цвету и запаху.

Полное сгорание газа. метан + кислород = углекислый газ + вода СН4 + 2О2 = СО2 + 2Н2ОКроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N2 + O2 Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.CO + H + C

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше. То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы. С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.Неполное горение определяется: ,

Александр Павлович Константинов

Главный инспектор по контролю безопасности ядерно и радиационно опасных объектов. Кандидат технических наук, доцент, профессор Российской академии естествознания.

Кухня с газовой плитой часто бывает главным источником загрязнения воздуха всей квартиры. И, что очень важно, это касается большинства жителей России. Ведь в России 90% городских и свыше 80% сельских жителей пользуются газовыми плитамиХата, З. И. Здоровье человека в современной экологической обстановке. - М. : ФАИР-ПРЕСС, 2001. - 208 с. .

В последние годы появились публикации серьёзных исследователей о высокой опасности газовых плит для здоровья. Медики знают, что в домах, где установлены газовые плиты, жители болеют чаще и дольше, чем в домах с электроплитами. Причём речь идёт о множестве разных болезней, а не только о заболеваниях дыхательных путей. Особенно заметно снижение уровня здоровья у женщин, детей, а также у пожилых и хронически больных людей, которые больше времени проводят дома.

Профессор В. Благов не зря назвал применение газовых плит «широкомасштабной химической войной против собственного народа».

Почему использование бытового газа вредит здоровью

Попытаемся ответить на этот вопрос. Есть несколько факторов, которые в сумме делают применение газовых плит опасным для здоровья.

Первая группа факторов

Эта группа факторов обусловлена самой химией процесса горения природного газа. Даже если бы бытовой газ сгорал полностью до воды и углекислого газа, это приводило бы к ухудшению состава воздуха в квартире, особенно на кухне. Ведь при этом из воздуха выжигается кислород, одновременно повышается концентрация углекислого газа. Но это не главная беда. В конце концов, тоже самое происходит с воздухом, которым дышит человек.

Гораздо хуже, что в большинстве случаев сгорание газа происходит не полностью, не на все 100%. Из-за неполного сгорания природного газа образуются гораздо более токсичные продукты. Например, оксид углерода (угарный газ), концентрация которого может многократно, в 20–25 раз превышать допустимую норму. А ведь это ведёт к головным болям, аллергии, недомоганиям, ослаблению иммунитетаЯковлева, М. А. А у нас в квартире газ. - Деловой экологический журнал. - 2004. - № 1(4). - С. 55. .

Помимо угарного газа в воздух выделяются сернистый газ, оксиды азота, формальдегид, а также бензпирен - сильный канцероген. В городах бензпирен попадает в атмосферный воздух от выбросов металлургических предприятий, тепловых электростанций (особенно угольных) и автомобилей (особенно старых). Но концентрация бензпирена даже в загазованном атмосферном воздухе не идёт в сравнение с его концентрацией в квартире. На рисунке показано, насколько больше мы получаем бензпирена, находясь на кухне.


Поступление бензпирена в организм человека, мкг/сут

Сравним первые два столбца. На кухне мы получаем вредных веществ в 13,5 раз больше, чем на улице! Для наглядности оценим поступление бензпирена в наш организм не в микрограммах, а в более понятном эквиваленте - числе выкуриваемых ежедневно сигарет. Так вот, если курильщик выкуривает в день одну пачку (20 сигарет), то на кухне человек получает в день эквивалент от двух до пяти сигарет. То есть хозяйка, имеющая газовую плиту, как бы немного «курит».

Вторая группа факторов

Эта группа связана с условиями эксплуатации газовых плит. Любой водитель знает, что нельзя находиться в гараже одновременно с автомобилем, у которого включён двигатель. Но ведь на кухне мы имеем как раз такой случай: сжигание углеводородного топлива в закрытом помещении! У нас отсутствует то устройство, которое есть у каждого автомобиля, - выхлопная труба. По всем правилам гигиены каждая газовая плита должна быть снабжена зонтом вытяжной вентиляции.

Особенно плохо обстоят дела в случае, если мы имеем маленькую кухню в малогабаритной квартире. Мизерная площадь, минимальная высота потолков, плохая вентиляция и весь день работающая газовая плита. А ведь при низких потолках продукты сгорания газа скапливаются в верхнем слое воздуха толщиной до 70–80 сантиметровБойко, А. Ф. Здоровье на 5+. - М. : Российская газета, 2002. - 365 с. .

Часто труд домохозяйки у газовой плиты сравнивают с вредными условиями труда на производстве. Это не совсем правильно. Расчёты показывают, что если кухня маленькая, при этом отсутствует хорошая вентиляция, то мы имеем дело с особо вредными условиями труда. Типа металлурга, обслуживающего коксохимические батареи.

Как уменьшить вред от газовой плиты

Как же нам быть, если всё настолько плохо? Может быть, действительно стоит избавиться от газовой плиты и установить электрическую или индукционную? Хорошо, если есть такая возможность. А если нет? На этот случай имеется несколько простых правил. Достаточно их соблюдать, и вы сможете уменьшить вред здоровью от газовой плиты в десятки раз. Перечислим эти правила (большая их часть - рекомендации профессора Ю. Д. Губернского)Ильницкий, А. Пахнет газом. - Будь здоров!. - 2001. - № 5. - С. 68–70. .

  1. Необходимо установить над плитой вытяжной зонт с воздухоочистителем. Это самый действенный приём. Но даже если по каким-то причинам вы не можете этого сделать, то остальные семь правил в сумме тоже позволят значительно уменьшить загазованность воздуха.
  2. Следите за полнотой сгорания газа. Если вдруг цвет газа стал не таким, каким должен быть по инструкции, немедленно вызывайте газовиков для регулирования разладившейся горелки.
  3. Не загромождайте плиту лишней посудой. Посуда должна стоять только на работающих горелках. В этом случае будет обеспечиваться свободный доступ воздуха к горелкам и более полное сгорание газа.
  4. Одновременно в работе лучше использовать не более двух горелок или духовку и одну горелку. Даже если у вашей плиты четыре горелки, одновременно лучше включать максимум две.
  5. Максимальное время непрерывной работы газовой плиты - два часа. После этого необходимо сделать перерыв и хорошенько проветрить кухню.
  6. Во время работы газовой плиты двери на кухню должны быть закрыты, а форточка открыта. Это обеспечит удаление продуктов сгорания через улицу, а не через жилые комнаты.
  7. После окончания работы газовой плиты целесообразно проветрить не только кухню, но и всю квартиру. Желательно сквозное проветривание.
  8. Никогда не используйте газовую плиту для обогрева и сушки белья. Вы же не станете для этой цели разжигать костёр посреди кухни, верно?

Горение газа представляет собой сочетание следующих процессов:

· смешение горючего газа с воздухом,

· подогрев смеси,

· термическое разложение горючих компонентов,

· воспламенение и химическое соединение горючих компонентов с кислородом воздуха, сопровождаемое образованием факела и интенсивным тепловыделением.

Горение метана происходит по реакции:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Условия, необходимые для сгорания газа:

· обеспечение необходимого соотношения горючего газа и воздуха,

· нагрев до температуры воспламенения.

Если в газовоздушной смеси газа меньше нижнего предела воспламенения, то она не будет гореть.

Если в газовоздушной смеси больше газа чем верхний предел воспламенения, то она будет сгорать не полностью.

Состав продуктов полного сгорания газа:

· СО 2 – углекислый газ

· Н 2 О – водяные пары

* N 2 – азот (он не реагирует с кислородом во время горения)

Состав продуктов неполного сгорания газа:

· СО – угарный газ

· С – сажа.

Для сгорания 1 м 3 природного газа требуется 9.5м 3 воздуха. Практически расход воздуха всегда больше.

Отношение действительного расхода воздуха к теоретически необходимому расходу называется коэффициентом избытка воздуха: α = L/L t .,

Где: L - действительный расход;

L t - теоретически необходимый расход.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет 1.05 – 1.2.

2. Назначение, устройство и основные характеристики проточных водонагревателей .

Проточные газовые водонагреватели. Предназначены для нагрева воды до определенной температуры при водоразборе.. Проточные водонагреватели делятся по нагрузке тепловой мощности: 33600, 75600, 105000 кДж, по степени автоматизации - на высший и первый классы. К.п.д. водонагревателей 80%, содержание оксида не более 0,05%, температура продуктов сгорания за тягопрерывателем не менее180 0 С. Принцип основан на нагреве воды в период водоразбора.

Основными узлами проточных водонагревателей являются: газогорелочное устройство, теплообменник, система автоматики и газоотвод. Газ низкого давления подается в инжекционную горелку. Продукты сгорания проходят через теплообменник и отводятся в дымоход. Теплота сгорания передается протекающей через теплообменник воде. Для охлаждения огневой камеры служит змеевик, через который циркулирует вода, проходящая через калорифер. Газовые проточные водонагреватели оборудованы газоотводящими устройствами и тягопрерывателями, которые в случае кратковременного нарушения тяги предотвращают погасание пламени газогорелочного устройства. Для присоединения к дымоходу имеется дымоотводящий патрубок.

Газовый проточный водонагреватель –ВПГ. На передней стенке кожуха расположены: ручка управления газовым краном, кнопка включения электромагнитного клапана и смотровое окно для наблюдения за пламенем запальной и основной горелки. Вверху аппарата расположено дымоотводящее устройство, внизу- патрубки для присоединения аппарата к газовой и водяной системе. Газ поступает в электромагнитный клапан, газовый блокировочный кран водогазогорелочного блока осуществляет последовательное включение запальной горелки и подачу газа к основной горелке.

Блокировку поступления газа к основной горелке, при обязательной работе запальника, осуществляет электромагнитный клапан, работающий от термопары. Блокировка подачи газа в основную горелку в зависимости от наличия водоразбора, осуществляется клапаном, имеющим привод через шток от мембраны водяного блок- крана.

Топливом для котельной является природный газ, поступающий с ГРС. Природный газ с давлением 1-2 МПа, температура, расход и давление которого регистрируются приборами коммерческого учета, поступает на первую ступень редуцирования. Давление после первой ступени редуцирования регулируется клапаном регулятора давления.

Далее топливный газ с давлением около 0,5 МПа поступает в трубное пространство подогревателя, теплоносителем которого является пар 0,3-0,6 МП. Температура топливного газа после подогревателя изменяется регулировочным клапаном, установленным на трубопроводе пара. После подогревателя давление топливного газа снижается второй ступенью редуцирования до 3-80 кПа.После второй ступени редуцирования газ поступает на горелки котлов через стандартные блоки газооборудования (СБГ). Перед СБГ каждого котла измеряется и регистрируется давление, расход, температура газа. Давление газа после СБГ каждого котла также регистрируется

5.3.2. Особенности процесса горения природного газа.

Выбор типа и количества газовых горелок, их размещение и организация процесса сгорания зависят от особенностей теплового и аэродинамического режима работы промышленной установки. Правильное решение этих задач определяет интенсивность технологического процесса и экономичность установки. Теоретические предпосылки и опыт работы свидетельствуют, что при проектировании новых газовых установок основные показатели их работы, как правило, могут быть улучшены. Однако здесь следует отметить, что неправильно выбранный способ сжигания газа и неудачное расположение горелок снижают производительность и к. п. д. установок.

При проектировании промышленных газовых установок задачи интенсификации технологического процесса и повышения эффективности использования топлива должны решаться с наименьшими материальными затратами и с соблюдением ряда других условий, таких как надежность работы, безопасность и т. д.

При сжигании природного газа в отличие от сжигания других видов топлива можно в широких пределах изменять характеристики факела. Поэтому он может быть использован практически для установок любого назначения. Здесь следует лишь помнить, что требуемая максимальная интенсификация технологического процесса, повышение к. п. д., а также удовлетворение других требований, предъявляемых к установке, не могут быть обеспечены только выбором той или иной газовой горелки, а будут достигнуты при правильном решении всего комплекса вопросов теплообмена и аэродинамики, начиная от подачи воздуха и газа и кончая удалением отработанных продуктов горения в атмосферу. Особое значение имеет начальная стадия процесса - организация сжигания газа.

Природный газ – это газ без цвета. Значительно легче воздуха. Присутствие газа в воздухе помещений, колодцах, шурфах более 20% вызывает удушье, головокружение, потерю сознания и смерть. По санитарным нормам природный газ (метан) относится к 4 классу опасности (вещество малоопасное). Малотоксичен, ядом не является.

Состав природного газа:

Метан 98,52%;

Этан 0,46%;

Пропан 0,16%;

Бутан 0,02%;

Азот 0,73%;

Углекислый газ 0,07%.

Если природный газ прошел все степени очистки, то его свойства мало отличаются от свойств метана. Метан – простейший элемент из ряда метановых углеводородов. Свойства метана:

Удельная теплота сгорания 7980 Ккал/м 3 ;

Сжижается при t°=-161°С, затвердевает при t°=-182°С;

Плотность метана – 0,7169 кг/м 3 (легче воздуха в 2 раза);

Температура воспламенения t°=645°С;

Температура горения t°=1500 ÷ 2000°С

Пределы взрываемости 5 ÷ 15%.

При взаимодействии с воздухом образуются высоко взрывоопасные смеси, способные взрываться, производить разрушения.

Горение любого топлива, в том числе и газового, является реакцией химического соединения его с кислородом и сопровождается выделением теплоты. Количество теплоты, получаемое при полном сгорании 1 м 3 (или 1 кг) газа, называется его теплотой сгорания. Различают теплоту сгорания низшую, в которой не учитывается скрытая теплота образования водяных паров, содержащихся в продуктах горения, и высшую, когда эта теплота учитывается. Разница между высшей и низшей теплотой сгорания зависит от количества водяных паров, образующихся при сгорании топлива, и составляет примерно 2500 кДж на 1 кг или 2000 кДж на 1 м 3 водяных паров.

Теплота сгорания различных видов топлив может значительно различаться. Так, например, дрова и торф имеют низшую теплоту сгорания до 12500, лучшие каменные угли-до 31000, а нефть около 40000 кДж/кг. Природный газ имеет низшую теплоту сгорания 40-44 МДж/кг.

Полное время сгорания  определяется временем  д смесеобразования (диффузионных процессов) и временем  к протекания химических реакций горения (кинетических процессов). С учетом того, что может происходить наложение этих стадий процесса, получаем  д + к.

При  к  д (горение протекающее одновременно со смесеобразованием в топке называется диффузионным , так как это смесеобразование включает процессы турбулентной (в заключительной стадии - молекулярной) диффузии).

При  д  к  к (горение заранее подготовленной смеси нередко условно называют кинетическим , оно определяется кинетикой химических реакций).

Когда  д и к соизмеримы, процесс горения называют смешанным.

Следующий этап за смесеобразованием - нагрев и воспламенение топлива. При смешивании струи горючего газа со струёй воздуха и постепенном повышении их температуры при некоторой температуре произойдет воспламенение смеси. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения.

Температура воспламенения не является физико-химической константой вещества, так как кроме природы горючего газа зависит от концентрации газа и окислителя, а также от интенсивности теплообмена между газовой смесью и окружающей средой.

Существуют верхний и нижний пределы концентрации газа и окислителя и вне этих пределов при данной температуре смеси не воспламеняются. При повышении температуры газо-воздушной смеси согласно закону Аррениуса происходит увеличение скорости реакции пропорционально е -Е/ RT , этой же величине пропорционально тепловыделение. Если тепло потери зоны горения, связанные с теплообменом с окружающей средой, превышают тепловыделение, то воспламенение и горение невозможны. Обычно разогрев протекает одновременно со смесеобразованием.

Газо-воздушная смесь, в которой содержание газа находится между нижним и верхним пределами воспламенения, является взрывоопасной. Чем шире диапазон пределов воспламенения (называемых также пределами взрываемости), тем более взрывоопасен газ. По химической сущности взрыв газо-воздушной (газокислородной) смеси - процесс очень быстрого (практически мгновенного) горения, приводящий к образованию продуктов горения, имеющих высокую температуру, и резкому возрастанию их давления. Расчетное избыточное давление при взрыве природного газа 0,75, пропана и бутана - 0,86, водорода-0,74, ацетилена-1,03 МПа. В практических условиях температура взрыва, не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.

В результате воспламенения и горения возникает пламя, которое является внешним проявлением интенсивных реакций окислителя вещества. Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части- сгоревший газ, через который пламя уже прошло, и несгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени.

Факелом называют поток, содержащий смесь воздуха, горящих газов, частиц топлива и продукты сгорания, в котором происходит разогрев, воспламенение и горение газообразного топлива.

При обычных температурах в топках (1000-1500 °С) углеводороды, включая метан, даже в очень малые промежутки времени в результате термического разложения дают заметные количества элементарного углерода. В результате появления в факеле элементарного углерода процесс горения в известной степени приобретает элементы гетерогенного, т. е. протекающего на поверхности твердых частиц. Наличие катализаторов (окислов железа, никеля) значительно ускоряет процесс разложения метана и других углеводородов.

Таким образом, в топке или рабочем пространстве печи между моментом ввода газа и воздуха и получением конечных продуктов горения в результате наложения процесса термического распада углеводородов и цепной реакции окисления наблюдается весьма сложная картина, характеризующаяся наличием как продуктов окисления СО 2 и Н 2 О, так и СО, Н 2 , элементарного углерода и продуктов неполного окисления (из последних особо важное значение имеет формальдегид). Соотношение между указанными компонентами будет зависеть от условий и длительности нагревания газа, предшествующего реакциям окисления.

При горении топлива происходят химические процессы окисления его горючих составляющих, сопровождающиеся интенсивным тепловыделением и быстрым подъемом температуры продуктов сгорания.

Различают гомогенное горение, протекающее в объеме, когда топливо и окислитель находятся в одинаковом агрегатном состоянии, и гетерогенное горение, происходящее на поверхности раздела фаз, когда горючее вещество и окислитель находятся в различных агрегатных состояниях.

Горение газообразного топлива является процессом гомогенным. При горении скорость прямого процесса несоизмеримо больше скорости обратного, поэтому обратной реакцией можно пренебречь. Напомним, что для гомогенной реакции горения выражение скорости прямой реакции будет иметь вид:

где -время; Т- абсолютная температура; К- универсальная газовая постоянная; k - константа скорости реакции, зависящая от природы реагирующих веществ, действия катализаторов, температуры; k 0 - эмпирическая константа; Е- энергия активации, характеризующая наименьшую избыточную энергию, которой должны обладать сталкивающиеся частицы, чтобы произошла реакция.

Из выражений (второе из них называют уравнением Аррениуса) следует, что скорость реакции возрастает с увеличением концентраций (давления в системе) и температуры и с уменьшением энергии активации. Экспериментальные измерения дают для энергии активации значительно меньшую величину, чем приведенные закономерности химической кинетики. Это объясняется тем, что процессы горения газов относятся к цепным реакциям и протекают через промежуточные стадии с непрерывным образованием активных центров (атомов или радикалов).

Например, при горении водорода (рис. 3) с помощью свободных атомов кислорода и радикалов гидроксила образуются три активных атома водорода вместо одного, имевшегося в начале рассматриваемого этапа реакции. Такое утроение происходит на каждом этапе, и в цепных реакциях лавинообразно нарастает количество активных центров. Кроме того, взаимодействие между неустойчивыми промежуточными продуктами идет гораздо быстрее, чем между молекулами.

Рис. 3. Схема цепной реакции горения водорода

Суммарная скорость реакции горения водорода определяется скоростью наиболее медленной реакции (выражаемой уравнением Н+О 2 ОН+Н 2) =kC н С о, где С н, С о - концентрации атомарного водорода и молекулярного кислорода.

Процессы окисления углеводородов, составляющих органическую часть природных и попутных газов, являются наиболее сложными. До сего времени отсутствуют четкие представления о кинетическом механизме протекания реакций, хотя можно с уверенностью сказать, что горение имеет цепной характер при наличии периода индукции и протекает с образованием многочисленных промежуточных продуктов частичного окисления и раз­ложения.

Приближенная схема стадийного горения метана может быть представлена набором следующих реакций:

Хотя начальные и конечные продукты реакции горения – газы, в промежуточных продуктах помимо газов может быть элементарный углерод в виде мельчайшей сажистой взвеси.

Скорость реакции горения окиси углерода зависит от концентраций в зоне реакции окиси углерода и водяных паров, а скорость цепного горения метана и других углеводородов - от концентраций атомарного водорода, кислорода и водяных паров.

Горение газового топлива представляет собой совокупность сложных аэродинамических, тепловых и химических процессов. Процесс горения газообразного топлива состоит из нескольких стадий: смешение газа с воздухом, нагрев полученной смеси до температуры воспламенения, зажигание и горение.

Антропотоксины;

Продукты деструкции полимерных материалов;

Вещества, поступающие в помещение с загрязненным атмосферным воздухом;

Химические вещества, выделяющиеся из полимерных материалов даже в небольших количествах, могут вызвать существенные нарушения в состоянии живого организма, например, в случае аллергического воздействия полимерных материалов.

Интенсивность выделения летучих веществ зависит от условий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации.

Установлена прямая зависимость уровня химического за­грязнения воздушной среды от общей насыщенности помещений полимерными материалами.

Более чувствителен к воздействию летучих компонентов из полимерных материалов растущий организм. Установлена также повышенная чувствительность больных к воздействию химических веществ, выделяющихся из пластиков, по сравне­нию со здоровыми. Исследования показали, что в помещениях с большой насыщенностью полимерами подверженность насе­ления аллергическим, простудным заболеваниям, неврастении, вегетодистонии, гипертонии оказалась выше, чем в помеще­ниях, где полимерные материалы использовались в меньшем количестве.

Для обеспечения безопасности применения полимерных материалов принято, что концентрации выделяющихся из по­лимеров летучих веществ в жилых и общественных зданиях не должны превышать их ПДК, установленные для атмосферного воздуха, а суммарный показатель отношений обнаруженных концентраций нескольких веществ к их ПДК должен быть не выше единицы. С целью предупредительного санитарного надзора за полимерными материалами и изделиями из них предложено лимитировать выделение ими вредных веществ в окружающую среду или на стадии изготовления, или вскоре после их выпуска заводами-изготовителями. В настоящее время обоснованы допустимые уровни около 100 химических веществ, выделяющихся из полимерных материалов.

В современном строительстве все отчетливее проявляется тенденция к химизации технологических процессов и использо­ванию в качестве смесей различных веществ, в первую очередь бетона и железобетона. С гигиенической точки зрения важно учитывать неблагоприятное влияние химических добавок в стро­ительные материалы из-за выделения токсических веществ.

Не менее мощным внутренним источником загрязнения среды помещений служат и продукты жизнедеятельности человека - антропотоксины. Установлено, что в процессе жиз­недеятельности человек выделяет примерно 400 химических соединений.

Исследования показали, что воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воз­духа помещений позволил идентифицировать в них ряд токси­ческих веществ, распределение которых по классам опасности представляется следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (второй класс опасности - высокоопасные вещества); уксусная кислота, фенол, метилсти-рол, толуол, метанол, винилацетат (третий класс опасности - малоопасные вещества). Пятая часть выявленных антропотоксинов относится к высокоопасным веществам. При этом обнаруже­но, что в невентилируемом помещении концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и концентрации таких веществ, как двуокись и окись углерода, аммиак. Осталь­ные вещества, хотя и составляли десятые и меньшие доли ПДК, вместе взятые свидетельствовали о неблагополучии воздушной среды, поскольку даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось на умственной работоспо­собности исследуемых.



Изучение воздушной среды газифицированных помеще­ний показало, что при часовом горении газа в воздухе помещений концентрация веществ составляла (мг/м 3): окиси углерода - в среднем 15, формальдегида - 0,037, окиси азота - 0,62, дву­окиси азота - 0,44, бензола - 0,07. Температура воздуха в помещении во время горения газа повышалась на 3-6 °С, влаж­ность увеличивалась на 10-15%. Причем высокие концентрации химических соединений наблюдались не только в кухне, но и в жилых помещениях квартиры. После выключения газовых приборов содержание в воздухе окиси углерода и других хими­ческих веществ снижалось, но к исходным величинам иногда не возвращалось и через 1,5-2,5 ч.

Изучение действия продуктов горения бытового газа на внешнее дыхание человека выявило увеличение нагрузки на систему дыхания и изменение функционального состояния цен­тральной нервной системы.

Одним из самых распространенных источников загрязнения воздушной среды закрытых помещений является курение. При спектрометрическом анализе воздуха, загрязненного табачным дымом, обнаружено 186 химических соединений. В недостаточно проветриваемых помещениях загрязнение воздушной среды продуктами курения может достигать 60-90%.

При изучении воздействия компонентов табачного дыма на некурящих (пассивное курение) у испытуемых наблюдалось раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровня артериального давления. Таким образом, основные источники загрязнения воздушной среды помещения условно можно разделить на четыре группы:

Значимость внутренних источников загрязнения в различ­ных типах зданий неодинакова. В административных зданиях уровень суммарного загрязнения наиболее тесно коррелиру­ет с насыщенностью помещений полимерными материалами (R = 0,75), в крытых спортивных сооружениях уровень химичес­кого загрязнения наиболее хорошо коррелирует с численностью людей в них (R = 0,75). Для жилых зданий теснота корреляцион­ной связи уровня химического загрязнения как с насыщенностью помещений полимерными материалами, так и с количеством людей в помещении приблизительно одинаковая.

Химическое загрязнение воздушной среды жилых и об­щественных зданий при определенных условиях (плохой вен­тиляции, чрезмерной насыщенности помещений полимерными материалами, большом скоплении людей и др.) может достигать уровня, оказывающего негативное влияние на общее состояние организма человека.

В последние годы, по данным ВОЗ, значительно возросло число сообщений о так называемом синдроме больных зданий. Описанные симптомы ухудшения здоровья людей, проживаю­щих или работающих в таких зданиях, отличаются большим раз­нообразием, однако имеют и ряд общих черт, а именно: головные боли, умственное переутомление, повышенная частота воздуш­но-капельных инфекций и простудных заболеваний, раздраже­ние слизистых оболочек глаз, носа, глотки, ощущение сухости слизистых оболочек и кожи, тошнота, головокружение.

Первая кате­гория - временно "больные" здания - включает недавно пос­троенные или недавно реконструированные здания, в которых интенсивность проявления указанных симптомов с течением времени ослабевает и в большинстве случаев примерно через полгода они исчезают совсем. Уменьшение остроты проявления симптомов, возможно, связано с закономерностями эмиссии ле­тучих компонентов, содержащихся в стройматериалах, красках и т. д.

В зданиях второй категории - постоянно "больных" опи­санные симптомы наблюдаются в течение многих лет, и даже широкомасштабные оздоровительные мероприятия могут не дать эффекта. Объяснение такой ситуации, как правило, найти трудно, несмотря на тщательное изучение состава воздуха, работы вентиляционной системы и особенностей конструкции здания.

Следует отметить, что не всегда удается обнаружить пря­мую зависимость между состоянием воздушной среды помеще­ния и состоянием здоровья населения.

Однако обеспечение оптимальной воздушной среды жилых и общественных зданий - важная гигиеническая и инженерно-техническая проблема. Ведущим звеном в решении этой пробле­мы является воздухообмен помещений, который обеспечивает требуемые параметры воздушной среды. При проектировании систем кондиционирования воздуха в жилых и общественных зданиях необходимая норма воздухоподачи рассчитывается в объеме, достаточном для ассимиляции тепло- и влаговыделений человека, выдыхаемой углекислоты, а в помещениях, предна­значенных для курения, учитывается и необходимость удаления табачного дыма.

Помимо регламентации количества приточного воздуха и его химического состава известное значение для обеспечения воздушного комфорта в закрытом помещении имеет электри­ческая характеристика воздушной среды. Последняя определя­ется ионным режимом помещений, т. е. уровнем положительной и отрицательной аэроионизации. Негативное воздействие на организм оказывает как недостаточная, так и избыточная ио­низация воздуха.

Проживание в местностях с содержанием отрицательных аэроионов порядка 1000-2000 в 1 мл воздуха благоприятно влия­ет на состояние здоровья населения.

Присутствие людей в помещениях вызывает снижение содержания легких аэроионов. При этом ионизация воздуха изменяется тем интенсивнее, чем больше в помещении людей и чем меньше его площадь.

Уменьшение числа легких ионов связывают с потерей воз­духом освежающих свойств, с его меньшей физиологической и химической активностью, что неблагоприятно действует на организм человека и вызывает жалобы на духоту и "нехватку кислорода". Поэтому особый интерес представляют процессы деионизации и искусственной ионизации воздуха в помещении, которые, естественно, должны иметь гигиеническую регламен­тацию.

Необходимо подчеркнуть, что искусственная ионизация воздуха помещений без достаточного воздухоснабжения в ус­ловиях высокой влажности и запыленности воздуха ведет к неизбежному возрастанию числа тяжелых ионов. Кроме того, в случае ионизации запыленного воздуха процент задержки пыли в дыхательных путях резко возрастает (пыль, несущая электри­ческие заряды, задерживается в дыхательных путях человека в гораздо большем количестве, чем нейтральная).

Следовательно, искусственная ионизация воздуха не яв­ляется универсальной панацеей для оздоровления воздуха закрытых помещений. Без улучшения всех гигиенических па­раметров воздушной среды искусственная ионизация не только не улучшает условий обитания человека, но, напротив, может оказать негативный эффект.

Оптимальными суммарными концентрациями легких ионов являются уровни порядка 3 х 10, а минимально необходимыми 5 х 10 в 1 см 3 . Эти рекомендации легли в основу действующих в Российской Федерации санитарно-гигиенических норм допу­стимых уровней ионизации воздуха производственных и обще­ственных помещений (табл. 6.1).