1.2. Определение подобных треугольников. Определение. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника. Другими словами, два треугольника подобны, если их можно обозначить буквами ABC и A1B1C1 так, что A= A1, B= B1, C= C1, Число k, равное отношению сходственных сторон треугольников, называется коэффициентом подобия.

Слайд 9 из презентации ««Подобные треугольники» 8 класс» . Размер архива с презентацией 1756 КБ.

Геометрия 8 класс

краткое содержание других презентаций

««Квадрат» 8 класс» - Устные задачи. Квадрат. Сумка с квадратным основанием. Богатый торговец. Квадрат – это прямоугольник, у которого все стороны равны. Площадь квадрата. Периметр квадрата. Признаки квадрата. Задания для устной работы по площади квадрата. Свойства квадрата. Сколько квадратов изображено на рисунке. Чёрный квадрат. Задания для устной работы по периметру квадрата. Квадрат среди нас.

«Скалярное произведение в координатах» - Свойства скалярного произведение векторов. Математический тест. Следствие. Обменяйтесь карточками. Новый материал. Теорема Наполеона. Вектор. Скалярное произведение в координатах и его свойства. Доказательство теоремы Пифагора. Решение треугольника. Геометрия. Математическая разминка. Решим задание. Имя автора теоремы.

«Формулы описанной и вписанной окружности» - Работа с учебником. Трапеция. Суммы длин противолежащих сторон. Углы вписанного четырехугольника. Вершины треугольника. Центр окружности. Выберите верное утверждение. Закончите предложение. Треугольник. Вписанная и описанная окружности. Центр описанной окружности. Окружность. Точка пересечения. Сумма противолежащих углов. Устная работа. Высота.

«Геометрия «Подобные треугольники»» - Первый признак подобия треугольников. Пропорциональные отрезки. Решение задач. Две стороны треугольника соединили отрезком, непараллельным третьей. Стороны треугольника. Значения синуса, косинуса и тангенса. Средняя линия треугольника. Значения синуса, косинуса и тангенса для углов 30°, 45°, 60°. Математический диктант. Основное тригонометрическое тождество. Продолжение боковых сторон. Третий признак подобия треугольников.

««Площадь прямоугольника» 8 класс» - Найдите площадь четырехугольника. Свойства площадей. На стороне АВ построен параллелограмм. АBCD и DСМK – квадраты. Площадь четырехугольника АСКМ. Стороны каждого из прямоугольников. Площадь прямоугольника. Единицы измерения площадей. Найти площадь треугольника. Многоугольник составлен из нескольких многоугольников. Найдите площадь шестиугольника. Найдите площадь квадрата. Единицы. ABCD – параллелограмм.

«Понятие вектора» - Нулевой вектор. Откладывание вектора от данной точки. Равнобедренная трапеция. Что такое вектор. Коллинеарные векторы. Два ненулевых вектора. Два ненулевых вектора коллинеарны. Отметьте на чертеже. Историческая справка. Направление векторов. Геометрическое понятие вектора. Задача. Параллелограмм. Векторы. Длина вектора. Равенство векторов.

Треугольник является самой простой замкнутой фигурой на плоскости. При изучении школьного курса геометрии рассмотрению его свойств уделяют особое внимание. В данной статье раскроем вопрос признаков подобия и равенства треугольников.

Какие треугольники называются подобными, а какие равными?

Логично предположить, что две рассматриваемые фигуры будут равны между собой, если они имеют все одинаковые углы и длины сторон. Что касается подобия, то здесь дело обстоит немного сложнее. Два треугольника будут подобны тогда, когда каждый угол одного будет равен соответствующему углу другого, а стороны, лежащие напротив равных углов обеих фигур, будут пропорциональны. Ниже изображен рисунок, на котором представлены два подобных треугольника.

Используя этот рисунок, запишем в виде математических равенств данное выше определение: B = G, A = E, C = F, BA / GE = AC / EF = BC / GF = r, здесь одна латинская буква означает угол, а две буквы - длину стороны. Величина r носит название коэффициента подобия. Понятно, что если r = 1, то имеют место не только подобные, но и равные треугольники.

Признаки подобия

Говоря о свойствах и и равенства треугольников, следует перечислить три основных критерия, по которым можно определить, являются ли рассматриваемые фигуры подобными или нет.

Итак, две фигуры будут подобными между собой, если выполняется одно из следующих условий:

  1. Их два угла равны. Поскольку сумма углов треугольника эквивалентна 180 o , то равенство первых двух из них автоматически означает, что одинаковыми будут и третьи. Используя рисунок выше, этот признак можно записать так: если B = G и A = E, то ABC и GEF являются подобными. Если же в этом случае будут равными хотя бы по одной стороне обоих фигур, тогда можно говорить о полной эквивалентности треугольников.
  2. Две стороны пропорциональны и углы между ними одинаковые. Например, BA / GE = AC / EF и A = E, тогда GEF и ABC будут подобными. Заметим, что углы A и E лежат между соответствующими пропорциональными сторонами.
  3. Все три стороны взаимно пропорциональны. Излагая математическим языком, получаем: BA / GE = AC / EF = BC / GF = r, тогда рассматриваемые фигуры тоже являются подобными.

Отметим еще раз, что для доказательства подобия достаточно привести какой-либо один из представленных признаков. Логично, что все остальные будут выполняться также.

Прямоугольные треугольники: когда они подобны, а когда равны?

Говоря о признаках равенства и подобия прямоугольных треугольников, следует отметить сразу, что у каждого из них по одному углу уже равны (90 o).

Последний факт приводит к следующей формулировке изложенных выше критериев подобия:

  1. Если в двух треугольниках прямоугольных равен всего один угол, который не является прямым, то такие фигуры подобны между собой.
  2. Если катеты пропорциональны между собой, тогда фигуры тоже будут подобны, поскольку угол между катетами является прямым.
  3. Наконец, пропорциональности всего двух любых сторон для обоих прямоугольных треугольников достаточно для доказательства их подобия. Причина этого заключается в том, что стороны данных фигур связаны между собой теоремой Пифагора, поэтому пропорциональность 2-х из них приводит к пропорциональности с аналогичным коэффициентом подобия и для третьих сторон.

Что касается равенства треугольников с прямыми углами, то здесь просто запомнить: если два каких-либо элемента (прямой угол не считается) обеих фигур равны, то равны и сами фигуры. Например, этими двумя элементами могут быть острый угол и катет, катет и гипотенуза или гипотенуза и острый угол.

Свойства треугольников подобных

Из рассмотренных признаков подобия и равенства треугольников свойства можно выделить такие:

  1. Периметры этих фигур относятся друг к другу как коэффициент подобия, то есть P 1 / P 2 = r, где P 1 и P 2 - периметры 1-го и 2-го треугольников, соответственно.
  2. Площади подобных фигур относятся как квадрат коэффициента подобия, то есть: S 1 / S 2 = r 2 , где S 1 и S 2 - площади 1-го и 2-го треугольников, соответственно.

Оба эти свойства можно доказать самостоятельно. Суть доказательства сводится к применению математической записи подобия между сторонами фигур. Здесь приведем лишь доказательство 1-го свойства.

Пусть a, b, c - длины сторон одного треугольника и a", b", c" - стороны второго. Поскольку фигуры подобны, то можно записать: a = r * a", b = r * b", c = r * c". Теперь эти выражения подставим в отношении их периметров, получим: P 1 / P 2 = (a + b + c) / (a" + b" + c") = (r * a" + r * b" + r*c") / (a" + b" + c") = r(a" + b" + c") / (a" + b" + c") = r.

Пример решения задачи

Признаки подобия и равенства треугольников можно использовать для решения различных геометрических задач. Ниже приводится один из примеров.

Имеются два треугольника. У одного из них стороны равны 7,6 см, 4,18 см и 6,65 см, а у другого 3,5 см, 2,2 см и 4 см. Необходимо определить, подобны ли эти фигуры.

Поскольку даны значения трех сторон, то можно сразу проверить 3-й критерий подобия. Сложность здесь состоит в том, что нужно понять, между какими сторонами брать отношения. Тут следует воспользоваться простыми логическими рассуждениями: коэффициенты подобия могут быть равными, если делить самую маленькую сторону одного треугольника на аналогичную для другого и так далее. Поэтому имеем: 4,18 / 2,2 = 1,9; 6,65 / 3,5 = 1,9; 7,6 / 4 = 1,9. Проверив отношение всех сторон, можно с уверенностью сказать, что треугольники являются подобными, поскольку выполняется 3-й критерий.

Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны. Коэффициент пропорциональности называется коэффициентом подобия. Таким образом, треугольник АВС подобен треугольнику A 1 В 1 С 1, если A = A 1, B = B 1, C = C 1 и где k – коэффициент подобия.

Первый признак подобия Теорема. (Первый признак подобия.) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 A = A 1, B= B 1. Тогда и C= C 1. Докажем, что. Отложим на луче А 1 В 1 отрезок А 1 В", равный АВ, и проведем прямую В"С", параллельную В 1 С 1. Треугольники А 1 B"C" и АВС равны (по второму признаку равенства треугольников). По теореме о пропорциональных отрезках имеет место равенство Следовательно, имеем равенство доказывается, что имеет место равенство треугольники подобны. Аналогичным образом Следовательно,

Вопрос 1 Какие треугольники называются подобными? Ответ: Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.

Вопрос 2 Сформулируйте треугольников. первый признак подобия Ответ: Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Вопрос 3 Подобны ли любые два: а) равносторонних треугольника; б) равнобедренных треугольника; в) равнобедренных прямоугольных треугольника? Ответ: а) Да; б) нет; в) да.

Упражнение 4 Изобразите треугольник A’B’C’, подобный данному треугольнику ABC, с коэффициентом подобия 0, 5. Ответ:

Упражнение 5 Стороны треугольника равны 5 см, 8 см и 10 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен: а) 0, 5; б) 2. Ответ: а) 2, 5 см, 4 см и 5 см; б) 10 см, 16 см и 20 см.

Упражнение 6 Подобны ли прямоугольные треугольники, если у одного из них есть угол 40 о, а у другого 50 о? Ответ: Да.

Упражнение 7 Два треугольника подобны. Два угла одного треугольника равны 55 о и 80 о. Найдите наименьший угол второго треугольника. Ответ: 45 о.

Упражнение 8 В подобных треугольниках АВС и А 1 В 1 С 1 АВ = 8 см, ВС = 10 см, А 1 В 1 = 5, 6 см, А 1 С 1 = 10, 5 см. Найдите АС и В 1 С 1. Ответ: AC = 15 см, B 1 C 1 = 7 см.

Упражнение 9 У треугольников АВС и А 1 В 1 С 1 A = A 1, B = B 1, АВ = 5 м, ВС = 7 м, А 1 В 1 = 10 м, А 1 С 1 = 8 м. Найдите остальные стороны треугольников. Ответ: AC = 4 м, B 1 C 1 = 14 м.

Упражнение 10 Стороны треугольника относятся как 5: 3: 7. Найдите стороны подобного ему треугольника, у которого: а) периметр равен 45 см; б) меньшая сторона равна 5 см; в) большая сторона равна 7 см; г) разность большей и меньшей сторон составляет 2 см. Ответ: а) 15 см, 9 см, 21 см; б) 8 см, 5 см, 11 см; в) 5 см, 3 см, 7 см; г) 2, 5 см, 1, 5 см, 3, 5 см.

Упражнение 11 На рисунке укажите все подобные треугольники. Ответ: а) ABC, FEC, DBE; б) ABC, GFC, AGD, FBE; в) ABC, CDA, AEB, BEC; г) AOB, COD; д) ABC и FGC; ADC и FEC; DBC и EGC.

Упражнение 12 У двух равнобедренных треугольников углы между боковыми сторонами равны. Боковая сторона и основание одного треугольника равны соответственно 17 см и 10 см, основание другого равно 8 см. Найдите его боковую сторону. Ответ: 13, 6 см.

Упражнение 13 В треугольник со стороной а и высотой h, опущенной на нее, вписан квадрат так, что две его вершины лежат на этой стороне треугольника, а другие две – на двух других сторонах треугольника. Найдите сторону квадрата. Ответ: .

Упражнение 14 В треугольник АВС вписан ромб ADEF так, что угол А у них общий, а вершина Е находится на стороне ВС. Найдите сторону ромба, если АВ = с и АС = b. Ответ: .

Упражнение 15 Можно ли треугольник пересечь прямой, непараллельной основанию, так, чтобы отсечь от него подобный треугольник? В каком случае это невозможно? Ответ: Можно, если треугольник неравносторонний.

Упражнение 16 Пусть AC и BD – хорды окружности, пересекающиеся в точке E. Докажите, что треугольники ABE и CDE подобны. Доказательство: Угол A треугольника ABE равен углу D треугольника CDE, как вписанные углы, опирающиеся на одну дугу окружности. Аналогично, угол B равен углу C. Следовательно, треугольники ABE и CDE подобны по первому признаку.

Упражнение 17 На рисунке AE = 3, BE = 6, CE = 2. Найдите DE. Ответ: 4.

Упражнение 18 На рисунке AB = 8, BE = 6, DE = 4. Найдите CD. Ответ: .

Упражнение 19 На рисунке CE = 2, DE = 5, AE = 4. Найдите BE. Ответ: 10.

Упражнение 20 На рисунке CE = 4, CD = 10, AE = 6. Найдите AB. Ответ: 15.

Упражнение 21 На рисунке DL – биссектриса треугольника DEF, вписанного в окружность. DL пересекает окружность в точке K, которая соединена отрезками с вершинами E и F треугольника. Найдите подобные треугольники. Ответ: DEK и DLF, DEK и ELK, DLF и ELK, DFK и DLE, DFK и FLK, DLE и FLK.

Упражнение 22 В окружность вписан остроугольный треугольник ABC, AH – его высота, AD – диаметр окружности, который пересекает сторону BC в точке M. Точка D соединена с вершинами B и C треугольника. Найдите подобные треугольники. Ответ: ABH и ADC, ACH и ADB, ABM и CDM, BMD и AMC.

Упражнение 23 Докажите, что произведение отрезков любой хорды, проведенной через внутреннюю точку круга, равно произведению отрезков диаметра, проведенного через ту же точку. Решение. Пусть дан круг с центром в точке O, хорда AB и диаметр CD пересекаются в точке E. Докажем, что Треугольники ACE и DBE подобны. Следовательно, значит,

Упражнение 24 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что треугольники ADE и BCE подобны. Доказательство: Угол D треугольника ADE равен углу C треугольника BCE, как вписанные углы, опирающиеся на одну дугу окружности. Угол E этих треугольников общий. Следовательно, треугольники ADE и BCE подобны по первому признаку.

Упражнение 25 Через внешнюю точку E окружности проведены две прямые, пересекающая окружность соответственно в точках A, C и B, D. Докажите, что AE·CE = BE·DE. Доказательство: Треугольники ADE и BCE подобны. Значит, AE: DE = BE: CE. Следовательно, AE·CE = BE·DE.

Упражнение 26 На рисунке AE = 9, BE = 8, CE = 24. Найдите DE. Ответ: 27.

Упражнение 27 Через внешнюю точку E окружности проведены прямая, пересекающая окружность в точках A и B, и касательная EС (C – точка касания). Докажите, что треугольники EAC и ECB подобны. Доказательство. У треугольников EAC и ECB угол E общий. Углы ACE и CBE равны, как углы, опирающиеся на одну хорду. Следовательно, треугольники EAC и ECB подобны.

Упражнение 28 Через внешнюю точку E окружности проведены прямая, пересекающая окружность в точках A и B, и касательная EС (C – точка касания). Докажите, что произведение отрезков AE и BE секущей равно квадрату отрезка CE касательной. Доказательство. Треугольники EAC и ECB подобны. Следовательно, AE: CE = CE: BE, значит, AE·BE = CE 2.

Упражнение 30 В треугольнике ABC проведены высоты AA 1 и BB 1. Докажите, что треугольники A 1 AC и B 1 BC подобны. Доказательство. Треугольники A 1 AC и B 1 BC прямоугольные и имеют общий угол C. Следовательно, они подобны по двум углам.

Упражнение 31 Докажите, что в прямоугольном треугольнике перпендикуляр, опущенный из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу. (Средним геометрическим двух положительных чисел a и b называется положительное число c, квадрат которого равен ab, т. е. c =). Решение: Треугольники ADC и CDB подобны. Следовательно, или CD 2 = AD BD, т. е. CD является средним геометрическим AD и BD.

Упражнение 32 В треугольнике ABC точка H – точка пересечения высот, точка O – центр описанной окружности. Докажите, что длина отрезка CH в два раза больше расстояния от точки O до прямой AB. Решение: Пусть B 1, C 1 – середины сторон AC и AB треугольника ABC. Треугольники HBC и OB 1 C 1 подобны, BC = 2 B 1 C 1. Следовательно, CH = 2 OC 1.

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Доказательство. Пусть ABC и $А_1В_1С_1$ - треугольники, у которых $\angle A = \angle A_1 ; \angle B = \angle B_1$ , и, следовательно, $\angle C = \angle C_1$ . Докажем, что $\triangle ABC \sim \triangle A_1B_1C_1$ (рис.1).

Отложим на ВА от точки В отрезок $ВА_2$, равный отрезку $A_1B_1$ , и через точку $А_2$ проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке $С_2$ . Треугольники $А_1В_1С_1\text{ и }А_2ВС_2$ равны: $А_1В_1 = А_2В$ по построению, $\angle В = \angle В_1$ по условию и $\angle А_1 = \angle А_2$ , так как $\angle А_1 = \angle А$ по условию и $\angle А = \angle А_2$ как соответственные углы. По лемме 1 о подобных треугольниках имеем: $\triangle A_2BC_2 \sim \triangle ABC$ , и значит, $\triangle ABC \sim \triangle A_1B_1C_1$ . Теорема доказана.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.

Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.

Пример 2. В треугольниках ABC и $А_1В_1С_1$ известно, что $\angle A = \angle A_1 ; \angle B = \angle B_1 ; АВ = 5 м, ВС = 7 м, А_1В_1 = 10 м, А_1С_1 = 8 м.$ Найти неизвестные стороны треугольников.

Решение. Треугольники, определенные условием задачи, подобны по первому признаку подобия. Из подобия треугольников следует: $$ \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1} \,\,\, (1) $$ Подставив в равенство (1) данные из условия задачи, получим: $$ \frac{5}{10} = \frac{7}{B_1C_1} = \frac{AC}{8} \,\,\, (2) $$ Из равенства (2) составим две пропорции $$ \frac{5}{10} = \frac{7}{B_1C_1} \\ \frac{5}{10} = \frac{AC}{8} \\ \text{ откуда }В_1С_1 = 14 (м), АС = 4 (м). $$

Пример 3. Углы В и $В_1$ треугольников ABC и $А_1В_1С_1$ равны. Стороны АВ и ВС треугольника ABC в 2,5 раза больше сторон $A_1B_1$ и $B_1C_1$ треугольника $A_1B_1C_1$. Найти АС и $A_1C_1$ , если их сумма равна 4,2 м.

Решение. Пусть условию задачи отвечает рисунок 2.

Из условия задачи: $$ 1) \angle B = \angle B_1 ; \\ 2) \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = 2,5 \\ 3) AC + A_1C_1 = 4,2 м. $$ Следовательно, $\triangle ABC \sim \triangle А_1В_1С_1$. Из подобия этих треугольников следует $$ \frac{AC}{A_1C_1} = 2,5\text{ , или }АС = 2,5\bullet А_1С_1 $$ Так как АС = 2,5 А 1 С 1 , то АС + А 1 C 1 = 2,5 А 1 С 1 + A 1 C 1 = 4,2, откуда A 1 C 1 = 1,2 (м), АС = 3 (м).

Пример 4. Подобны ли треугольники ABC и А 1 В 1 С 1 , если АВ = 3 см, ВС = 5 см, АС = 7 см, А 1 В 1 = 4,5 см, B 1 C 1 = 7,5 см, A 1 C 1 = 10,5 см?

Решение. Имеем: $$ \frac{AB}{A_1B_1} = \frac{3}{4,5} = \frac{1}{1,5} \\ \frac{BC}{B_1C_1} = \frac{5}{7,5} = \frac{1}{1,5} \\ \frac{AC}{A_1C_1} = \frac{7}{10,5} = \frac{1}{1,5} $$ Следовательно, треугольники подобны по третьему признаку.

Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Решение. Рассмотрим произвольный треугольник ABC. Обозначим буквой О точку пересечения его медиан $АА_1\text{ и }ВВ_1$ и проведем среднюю линию $A_1B_1$ этого треугольника (рис.3).

Отрезок $A_1B_1$ параллелен стороне АВ, поэтому $\angle 1 = \angle2 \text{ и } \angle 3 = \angle 4 $. Следовательно, треугольники АОВ и $A_1OB_1$ подобны по двум углам, и, значит, их стороны пропорциональны: $$ \frac{AO}{A_1O} = \frac{BO}{B_1O} = \frac{AB}{A_1B_1} $$

Но $AB = 2A_1B_1$ , поэтому $AO = 2A_1O$ и $BO = 2B_1O$ .

Аналогично доказывается, что точка пересечения медиан $BB_1\text{ и }CC_1} делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Замечание. Ранее отмечалось, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. На основе последнего утверждения устанавливается, что и высоты треугольника (или их продолжения) пересекаются в одной точке. Эти три точки и точка пересечения медиан называются замечательными точками треугольника.

Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Видео-решение.