1. Через точку А (рис. 3) можно провести только одну перпендикулярную прямую АВ к прямой СD; остальные прямые, проходящие через точку А и пересекающие СD , называются наклонными прямыми (рис. 3, прямые АЕ и АF ).

2. Из точки A можно опустить перпендикуляр на прямую CD ; длина перпендикуляра (длина отрезка АВ ), проведенного из точки А на прямую CD ,- это самое короткое расстояние от A до CD (рис. 3).

3. Несколько перпендикуляров, проведенных через точки прямой к прямой, никогда между собой не пересекаются (рис. 4).

Признаки: На плоскости один признак - 4 прямых угла (90).
В 3-мерном пространстве: 2 прямые перпендикулярны, если они соотв. параллельны 2-м прямым, лежащим в одной плоскости и перпендикулярным друг другу.
Обычно говорят о признаках перп-сти прямой и плоскости...

Перпендикулярность плоскостей

Определение Две пересекающиеся плоскости, называются перпендикулярными , если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.
Теорема 5 Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны. Доказательство.

Теорема 5 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПЛОСКОСТЕЙ. Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Доказательство: Пусть - плоскость, b - перпендикулярная ей прямая, - плоскость проходящая через прямую b, и с - прямая по которой пересекаются плоскости и . Докажем, что плоскости и перпендикулярны. Проведем в плоскости через точку пересечения прямой b с плоскостью прямую а, перпендикулярную прямой с. Проведем через прямые а и b плоскость . Она перпендикулярна прямой с, так как прямые а и b перпендикулярны, то плоскости и перпендикулярны. Теорема доказана.

Перпендикулярность прямой и плоскости


Определение Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения. Смотри также опорную задачу №1.
Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости. Доказательство.
Теорема 2 1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство.
Теорема 3 2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ . Две прямые, перпендикулярные одной и той же плоскости, параллельны. Доказательство.

1. Параллельные прямые в пространстве

Две прямые в пространстве называются параллельными, если лежат в одной плоскости и не пересекаются.

Параллельность прямых a и b обозначается так: a∥b илиb∥a.

Teорема 1. Через две параллельные прямые можно провести плоскость, и при том только одну.

Теорема 2. Через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и при том только одну.

Теорема 3. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Теорема 4. Две прямые, параллельные третьей прямой, параллельны.

Теорема 3.2.

Две прямые, параллельные третьей, параллельны.

Это свойство называется транзитивностью параллельности прямых.

Доказательство

Свойство параллельных прямых задается следующей теоремой, обратной к теореме 3.1.

Теорема 3.4.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

Доказательство

На основании этой теоремы легко обосновываются следующие свойства.

  • Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
  • Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180°.

Следствие 3.2.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Понятие параллельности позволяет ввести следующее новое понятие, которое в дальнейшем понадобится в 11-й главе.

Два луча называются одинаково направленными , если существует такая прямая, что, во-первых, они перпендикулярны этой прямой, во-вторых, лучи лежат в одной полуплоскости относительно этой прямой.

Два луча называются противоположно направленными , если каждый из них одинаково направлен с лучом, дополнительным к другому.

Одинаково направленные лучи AB и CD будем обозначать: а противоположно направленные лучи AB и CD

Параллельность плоскостей

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-08-26

Свойства наклонных, выходящих из одной точки. 1. Перпендикуляр всегда короче наклонной, если они проведены из одной точки. 2. Если наклонные равны, то равны и их проекции, и наоборот. 3. Большей наклонной соответствует большая проекция и наоборот.

Слайд 10 из презентации «Перпендикуляр и наклонная к плоскости» . Размер архива с презентацией 327 КБ.

Геометрия 10 класс

краткое содержание других презентаций

«Задачи на параллелограмм» - Геометрия. Точки. Высота параллелограмма. Площадь. Доказательство. Касательная к окружности. Признаки параллелограмма. Периметр параллелограмма. Окружность. Часть. Средняя линяя. Центры окружностей. Углы. Параллелограмм. Найдите площадь параллелограмма. Две окружности. Свойства параллелограмма. Острый угол. Площадь параллелограмма. Диагонали параллелограмма. Диагональ. Четырехугольник. Треугольники.

«Методы построения сечений» - Формирование умений и навыков построения сечений. Рассмотрим четыре случая построения сечений параллелепипеда. Построить сечения тетраэдра. Метод внутреннего проектирования. Работа с дисками. Параллелепипед имеет шесть граней. Секущая плоскость. Построение сечений многогранников. Следом называют прямую пересечения плоскости сечения и плоскости какой-либо грани многогранника. Метод следов. Памятка.

««Правильные многогранники» 10 класс» - Прогнозируемый результат. Тетраэдр, описанный около сферы орбиты Марса. Центр О, ось а и плоскость. Грани многогранника. Радиолария. Содержание. Правильные многогранники. Правильные многогранники в философской картине мира Платона. Феодария. Правильные многогранники встречаются в живой природе. Ход урока. Точка (прямая, плоскость) называется центром (осью, плоскостью). Какое из перечисленных геометрических тел не является правильным многогранником.

«Определение двугранных углов» - Точка К удалена от каждой стороны. Точки М и К лежат в разных гранях. Градусная мера угла. Свойство трёхгранного угла. Замечания к решению задач. В одной из граней двугранного угла, равного 30, расположена точка М. Построение линейного угла. Провести перпендикуляр. Прямая, проведенная в данной плоскости. Двугранные углы в пирамидах. Решение задач. Точка К. Данная пирамида. Точка на ребре может быть произвольная.

«Методы построения сечений многогранников» - Любая плоскость. Художники. Законы геометрии. Блиц-опрос. Взаимное расположение плоскости и многогранника. Построить сечение многогранника. Многоугольники. Аксиоматический метод. Задачи. Корабль. Задача. Аксиомы. Построение сечений многогранников. Сечения различными плоскостями. Древняя китайская пословица. Самостоятельная работа. Диагональные сечения. Закрепление полученных знаний. Секущая плоскость.

«Равносторонние многоугольники» - Гексаэдр (Куб) Куб составлен из шести квадратов. Октаэдр Октаэдр составлен из восьми равносторонних треугольников. Тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Существует 5 видов правильных многогранников. Правильные Многоугольники. Додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Икосаэдр имеет 20 граней, 12 вершин и 30 ребер. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер. Тетраэдр Тетраэдр составлен из четырех равносторонних треугольников.

Определение.1. Параллельные прямое
Определение.2. Перпендикулярные прямые
Теорема.1. I свойство параллельных прямых
Теорема.2. II свойство параллельных прямых
Теорема.3. III свойство параллельных прямых
Теорема.4. IV свойство параллельных прямых
Теорема.5. V свойство параллельных прямых
Теорема.6. I признак параллельных прямых
Теорема.7. II признак параллельных прямых
Теорема.8. III признак параллельных прямых
Теорема.9. IV признак параллельных прямых
Теорема 10. V признак параллельных прямых
Теорема 11. Две прямые, параллельные третей
Теорема 11.1 Следствие
Теорема 12. Прямая, пересекающая одну из параллельных прямых
Теорема 13. Отрезки параллельных прямых
Теорема 14. Теорема Фалеса
Теорема 14.1. Параллельные прямые, пересекающие стороны угла
Теорема 15. Прямая, перпендикулярна одной из параллельных прямых
Теорема 16. Две (и более) прямые, перпендикулярные третей прямой

Определение 1. Параллельными называются прямые, которые не пересекаются, сколько бы мы их не продолжали.
На рисунке a и b . Определение 2. Перпендикулярными называются прямые, которые пересекаются под прямым углом.
На рисунке c и d .
При пересечении пары прямых (параллельных в данном случае) некой прямой (такая прямая называется секущей прямой) образуются (акромя пройденных нами в теме углы смежных и вертикальных) следующие углы:
Внутренние накрестлежащие углы - 2 и 8; 3 и 5
Внешние накрестлежащие углы - 1 и 7; 4 и 6
Внутренние односторонние углы - 2 и 5; 3 и 8
Внешние односторонние углы - 1 и 6; 4 и 7
Соответственные углы - 1 и 5; 2 и 6; 3 и 7; 4 и 8
Между этими углами можно вывести закономерности. Свойства параллельных прямых:
Теорема 1. Внутренние накрестлежащие углы равны

Доказательство: Пусть a и b - две параллельные прямые, c - секущая, A и B - точки пересечения секущей с этими прямыми. Пусть утверждение теоремы ложно. Проведем тогда через точку A прямую d, такую что внутренние накрест лежащие углы при прямых b и d и секущей c равны. Тогда по первому признаку параллельности прямых, прямые b и d параллельны. Но прямые b и a параллельны. Значит, через точку A проходят две прямые - a и d, параллельные прямой b. Это противоречит IX аксиоме. Значит, утверждение теоремы верно. Теорема доказана.
Теорема 2. Внешние накрестлежащие углы равны

Доказательство:
Теорема 3. Сумма внутренних односторонних углов равна 180 градусам

Доказательство: Очевидно из первого свойства параллельных прямых.
Теорема 4. Сумма внешних односторонних углов равна 180 градусам

Доказательство: Очевидно из первого свойства параллельных прямых.
Теорема 5. Соответственные углы равны

Доказательство: Очевидно из первого свойства параллельных прямых.

Признаки параллельных прямых :

Теорема 6. а и b третей прямой с внутренние накрестлежащие углы равны (одна пара), то такие прямые а и b являются параллельными

Доказательство: Пусть прямые a и b пересекаются секущей в точках A и B, но прямые a и b пересекаются в точке C (рис. 15). Секущая c разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник ABD, равный треугольнику ABC, с вершиной D в другой полуплоскости. Угол DAB равен углу ABC, а значит, точка D лежит на прямой a по условию. Аналогично точка D лежит на прямой b. Следовательно, точка D принадлежит прямым a и b. Значит, прямые a и b пересекаются в двух точках - C и D. Противоречие. Значит, исходное предположение не верно. Теорема доказана.
Теорема 7. Если при пересечении двух прямых а и b третей прямой с внешние накрестлежащие углы равны (одна пара), то такие прямые а и b являются параллельными

Доказательство:
Теорема 8. Если при пересечении двух прямых а и b третей прямой с сумма внутренних односторонних углов равна 180 градусам (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 9. Если при пересечении двух прямых а и b третей прямой с сумма внешних односторонних углов равна 180 градусам (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 10. Если при пересечении двух прямых а и b третей прямой с соответственные углы равны (одна пара), то такие прямые а и b являются параллельными

Доказательство: Очевидно из первого признака параллельности прямых.
Теорема 11 . Две прямые, параллельные третей, параллельны.

Доказательство: Пусть прямые a и b параллельны прямой c. Допустим, что прямые a и b не па-раллельны. Тогда либо прямые a и b совпадают, что противоречит условию, либо пересекаются в не-которой точке S. Тогда через точку S проходит две прямые - a и b, параллельные прямой c, что противоречит IX аксиоме. Значит, исходное предположение не верно. Теорема доказана.
Теорема 11.1 . Если параллельно одной из двух параллельных прямых провести третью прямую, вторая из этих прямых либо параллельна третьей, либо совпадает с ней.

Доказательство: Очевидно из теоремы 11 параллельности прямых.
Теорема 12 . Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую.
Теорема 13 . Отрезки параллельных прямых, заключенные между некой (иной) парой параллельных прямых, равны.
Теорема 14 . (Теорема Фалеса) Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство: Пусть A 1 , A 2 , A 3 - точки пересечения параллельных прямых с одной из сторон угла, и точка A 2 лежит между точками A 1 и A 3 . Пусть B 1 , B 2 , B 3 - соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если A 1 A 2 = A 2 A 3 , то B 1 B 2 = B 2 B 3 . Проведем через точку B 2 прямую EF, параллельную прямой A 1 A 3 . Треугольники EB 2 B 1 и FB 2 B 3 равны по второму признаку равенства треугольников. У них стороны EB 2 и FA 2 равны по условию, углы B 1 B 2 E и B 3 B 2 F равны как вертикальные, а углы B 1 EB 2 и B 2 FB 3 равны как внутренние накрест лежащие при секущей EF. Значит, B 1 B 2 = B 2 B 3 . Что и требовалось доказать.
Теорема 14.1. . Параллельные прямые, пересекая стороны угла, отсекают пропорциональные отрезки.

Теорема 15 . Две (и более) прямые, перпендикулярные третей прямой, параллельны.

Доказательство: Действительно, внутренние накрест лежащие углы равны 90°. Следовательно, по первому признаку параллельных прямых, эти прямые параллельны.
Теорема 16 . Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и второй.

Доказательство: Очевидно из теоремы 15.

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Yandex.RTB R-A-339285-1

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается « ⊥ », а запись принимает вид a ⊥ b , что значит, прямая a перпендикулярна прямой b .

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной. В трехмерном пространстве прямые O x , O z , O y перпендикулярны попарно: O x и O z , O x и O y , O y и O z .

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b .

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат О х у с заданными уравнениями прямой на плоскости, которые определяют прямые a и b . Направляющие векторы прямых a и b обозначим a → и b → . Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a → и b → . Это возможно только при скалярном произведении векторов a → = (a x , a y) и b → = (b x , b y) равном нулю, а запись имеет вид a → , b → = a x · b x + a y · b y = 0 . Получим, что необходимым и достаточным условием перпендикулярности прямых a и b , находящихся в прямоугольной системе координат О х у на плоскости, является a → , b → = a x · b x + a y · b y = 0 , где a → = (a x , a y) и b → = b x , b y - это направляющие векторы прямых a и b .

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b .

Пример 1

Заданы три точки A (8 , 6) , B (6 , 3) , C (2 , 10) в прямоугольной системе координат О х у. Определить, прямые А В и А С перпендикулярны или нет.

Решение

Прямые А В и А С имеют направляющие векторы A B → и A C → соответственно. Для начала вычислим A B → = (- 2 , - 3) , A C → = (- 6 , 4) . Получим, что векторы A B → и A C → перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

A B → , A C → = (- 2) · (- 6) + (- 3) · 4 = 0

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x - 1 2 = y - 7 3 и x = 1 + λ y = 2 - 2 · λ перпендикулярны или нет.

Решение

a → = (2 , 3) является направляющим вектором заданной прямой x - 1 2 = y - 7 3 ,

b → = (1 , - 2) является направляющим вектором прямой x = 1 + λ y = 2 - 2 · λ .

Перейдем к вычислению скалярного произведения векторов a → и b → . Выражение будет записано:

a → , b → = 2 · 1 + 3 · - 2 = 2 - 6 ≠ 0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается в виде a → , b → = a x · b x + a y · b y + a z · b z = 0 , где a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b .

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x 2 = y - 1 = z + 1 0 и x = λ y = 1 + 2 · λ z = 4 · λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a → = (2 , - 1 , 0) и b → = (1 , 2 , 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a → , b → = 2 · 1 + (- 1) · 2 + 0 · 4 = 0 .

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a с вектором b , это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. То есть при наличии общего уравнения прямой вида A x + B y + C = 0 , уравнения прямой в отрезках вида x a + y b = 1 , уравнения прямой с угловым коэффициентом вида y = k x + b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3 x - y + 2 = 0 и x 3 2 + y 1 2 = 1 .

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что n α → = (3 , - 1) - это нормальный вектор для прямой 3 x - y + 2 = 0 .

Упростим уравнение x 3 2 + y 1 2 = 1 до вида 2 3 x + 2 y - 1 = 0 . Теперь четко видны координаты нормального вектора, которые запишем в такой форме n b → = 2 3 , 2 .

Векторы n a → = (3 , - 1) и n b → = 2 3 , 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0 . Получим n a → , n b → = 3 · 2 3 + (- 1) · 2 = 0 .

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y = k 1 x + b 1 , а прямая b - y = k 2 x + b 2 , отсюда следует, что нормальные векторы будут иметь координаты (k 1 , - 1) и (k 2 , - 1) . Само условие перпендикулярности сводится к k 1 · k 2 + (- 1) · (- 1) = 0 ⇔ k 1 · k 2 = - 1 .

Пример 5

Выяснить, перпендикулярны ли прямые y = - 3 7 x и y = 7 3 x - 1 2 .

Решение

Прямая y = - 3 7 x имеет угловой коэффициент, равный - 3 7 , а прямая y = 7 3 x - 1 2 - 7 3 .

Произведение угловых коэффициентов дает значение - 1 , - 3 7 · 7 3 = - 1 , то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x - y - 1 = 0 и x 0 = y - 4 2 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x - y - 1 = 0 имеет координаты n a → = (1 , - 1) , а b → = (0 , 2) - направляющий вектор прямой x 0 = y - 4 2 .

Отсюда видно, что векторы n a → = (1 , - 1) и b → = (0 , 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t , чтобы выполнялось равенство n a → = t · b → . Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

а) Через точку А можно провести только одну перпендикулярную прямую А H к прямой BT; остальные прямые, проходящие через точку А и пересекающие BT , называются наклонными (прямые А B, AC и А T ).

б) Длина перпендикуляра (длина отрезка А H ), проведенного из точки А на прямую BT ,- это самое короткое расстояние от A до BT .

Расстоянием от точки до прямой называется длина перпендикуляра , проведённого из этой точки к прямой.

с) Несколько перпендикуляров, проведенных через различные точки к одной прямой, никогда между собой не пересекаются.

15. Треугольник - это геометрическая фигура, которая состоит из трех точек, не лежащих на одной прямой и трех отрезков, соединяющих эти точки. Точки называются вершинами , а отрезки- сторонами треугольника .

Вершины: А, В, С

Стороны: АС, АВ, ВС, или соответственно b, c, а.

Периметром треугольника, как в прочем и любой фигуры, называется сумма длин всех сторон. Периметр - греч.слово peri – «вокруг», «около» и metreo – «измеряю».

16. Если два треугольника равны , то элементы (т.е.три стороны и три угла) одного треугольника соответственно равны элементам другого треугольника.

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

17. Теорема – утверждение, справедливость которого устанавливается путём рассуждений. Сами рассуждения называются доказательством теоремы . Теорема состоит из двух утверждений: утверджение-условие, утверждение-вывод. Теорему всегда можно записать в виде:

Если «утверджение-условие», то «утверждение-вывод».

Признак – это свойство, по которому познают или узнают предмет, свойство объекта, обуславливающее его различие или общность с другими объектами.

Признак в математике это теорема , в которой утверждается, что определенные условия обеспечивают принадлежность фигуры (фигур) конкретному множеству, которое было определено ранее (например, множеству треугольников).

18. Теорема. Первый признак равенства треугольников . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Если

то

19. Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

h a –высота, проведенная из вершины А к стороне а,

h b - высота, проведенная из вершины В к стороне b,

h c - высота, проведенная из вершины С к стороне с.

20. Медианой (лат. mediāna - средний)треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке.

21. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

l a –биссектриса угла А, l b - биссектриса угла B,