Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

Квадрат суммы и квадрат разности

Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

  • 37 2 = (30+7) 2 = 30 2 + 2*30*7 + 7 2 = 900+420+49 = 1 369
  • 94 2 = (90+4) 2 = 90 2 + 2*90*4 + 4 2 = 8100+720+16 = 8 836

Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

Квадрат близкий к известному квадрату

Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

На 1 больше:

Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

  • 31 2 = 30 2 + 31 + 30 = 961
  • 16 2 = 15 2 + 15 + 16 = 225 + 31 = 256

На 1 меньше:

Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

  • 19 2 = 20 2 - 19 - 20 = 400 - 39 = 361
  • 24 2 = 25 2 - 24 - 25 = 625 - 25 - 24 = 576

На 2 больше

Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

  • 22 2 = 20 2 + 2*(20+22) = 400 + 84 = 484
  • 27 2 = 25 2 + 2*(25+27) = 625 + 104 = 729

На 2 меньше

Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

  • 48 2 = 50 2 - 2*(50+48) = 2500 - 196 = 2 304
  • 98 2 = 100 2 - 2*(100+98) = 10 000 - 396 = 9 604

Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

Квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

  • 15 2 = (1*(1+1)) 25 = 225
  • 25 2 = (2*(2+1)) 25 = 625
  • 85 2 = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

  • 155 2 = (15*(15+1)) 25 = (15*16)25 = 24 025

Квадрат чисел близких к 50

Считать квадрат чисел, которые находятся в диапазоне от 40 до 60 , можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

  • 44 2 = (25-6)*100 + 6 2 = 1900 + 36 = 1936
  • 53 2 = (25+3)*100 + 3 2 = 2800 + 9 = 2809

Квадрат трехзначных чисел

Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Одним из наиболее частых математических действий, применяемых в инженерных и других вычислениях, является возведение числа во вторую степень, которую по-другому называют квадратной. Например, данным способом рассчитывается площадь объекта или фигуры. К сожалению, в программе Excel нет отдельного инструмента, который возводил бы заданное число именно в квадрат. Тем не менее, эту операцию можно выполнить, использовав те же инструменты, которые применяются для возведения в любую другую степень. Давайте выясним, как их следует использовать для вычисления квадрата от заданного числа.

Как известно, квадрат числа вычисляется его умножением на самого себя. Данные принципы, естественно, лежат в основе вычисления указанного показателя и в Excel. В этой программе возвести число в квадрат можно двумя способами: использовав знак возведения в степень для формул «^» и применив функцию СТЕПЕНЬ . Рассмотрим алгоритм применения данных вариантов на практике, чтобы оценить, какой из них лучше.

Способ 1: возведение с помощью формулы

Прежде всего, рассмотрим самый простой и часто используемый способ возведения во вторую степень в Excel, который предполагает использование формулы с символом «^» . При этом, в качестве объекта, который будет возведен в квадрат, можно использовать число или ссылку на ячейку, где данное числовое значение расположено.

Общий вид формулы для возведения в квадрат следующий:

В ней вместо «n» нужно подставить конкретное число, которое следует возвести в квадрат.

Посмотрим, как это работает на конкретных примерах. Для начала возведем в квадрат число, которое будет составной частью формулы.


Теперь давайте посмотрим, как возвести в квадрат значение, которое расположено в другой ячейке.


Способ 2: использование функции СТЕПЕНЬ

Также для возведения числа в квадрат можно использовать встроенную функцию Excel СТЕПЕНЬ . Данный оператор входит в категорию математических функций и его задачей является возведение определенного числового значения в указанную степень. Синтаксис у функции следующий:

СТЕПЕНЬ(число;степень)

Аргумент «Число» может представлять собой конкретное число или ссылку на элемент листа, где оно расположено.

Аргумент «Степень» указывает на степень, в которую нужно возвести число. Так как перед нами поставлен вопрос возведения в квадрат, то в нашем случае данный аргумент будет равен 2 .

Теперь посмотрим на конкретном примере, как производится возведение в квадрат с помощью оператора СТЕПЕНЬ .


Также для решения поставленной задачи вместо числа в виде аргумента можно использовать ссылку на ячейку, в которой оно расположено.


Если умножить число само на себя, получится возведение в квадрат . Даже первоклассник знает, что «двукратно два - четыре». Трехзначные, четырехзначные и т.д. числа отменнее перемножать в столбик либо на калькуляторе, а вот с двузначными справляйтесь без электронного помощника, умножая в уме.

Инструкция

1. Разложите всякое двузначное число на составляющие, выделив число единиц. В числе 96 число единиц - 6. Следственно дозволено записать: 96 = 90 + 6.

2. Возведите в квадрат первое из чисел: 90 * 90 = 8100.

3. Подобно сделайте со вторым число м: 6 * 6 = 36

4. Перемножьте числа между собой и удвойте итог: 90 * 6 * 2 = 540 * 2 = 1080.

5. Сложите итоги второго, третьего и четвертого шагов: 8100 + 36 + 1080 = 9216. Это и есть итог возведения в квадрат числа 96. Позже некоторой тренировки сумеете стремительно делать шаги в уме, поражая родителей и одноклассников. Пока не освоились, записывайте итоги всего шага, дабы не запутаться.

6. Для тренировки возведите в квадрат число 74 и проверьте себя на калькуляторе. Последовательность действий: 74 = 70 + 4, 70 * 70 = 4900, 4 * 4 = 16, 70 * 4 * 2 = 560, 4900 + 16 + 560 = 5476.

7. Возведите во вторую степень число 81. Ваши действия: 81 = 80 + 1, 80 * 80 = 6400, 1 * 1 = 1, 80 * 1 * 2 = 160, 6400 + 1 + 160 = 6561.

8. Запомните нестандартный метод возведения в квадрат двузначных чисел, которые оканчиваются на цифру 5. Выделите число десятков: в числе 75 их 7 штук.

9. Умножьте число десятков на следующую цифру в число вом ряду: 7 * 8 = 56.

10. Припишите справа число 25: 5625 - итог возведения в квадрат числа 75.

11. Для тренировки возведите во вторую степень число 95. Оно оканчивается на цифру 5, следственно последовательность действий: 9 * 10 = 90, 9025 - итог.

12. Обучитесь возводить в квадрат негативные числа: -95 в квадрат е равно 9025, как в одиннадцатом шаге. Подобно -74 в квадрат е равно 5476, как в шестом шаге. Это связано с тем, что при умножении 2-х негативных чисел неизменно получается правильное число : -95 * -95 = 9025. Следственно при возведении в квадрат можете легко не обращать внимания на знак «минус».

Возведение числа в степень является одним из простейших алгебраических действий. В обыденной жизни возведение используется редко, а вот на производстве при выполнении расчетов – фактически повсюду, следственно пригодно припомнить, как это делается.

Инструкция

1. Представим, что мы имеем какое-то число а, степенью которого является число n. Построить число в степень обозначает, что нужно умножить число а на самоё себя n раз.

2. Разглядим несколько примеров.Дабы построить число 2 во вторую степень, нужно произвести действие:2х2=4

3. Дабы построить число 3 в пятую степень, нужно исполнить действие:3х3х3х3х3=243

4. Существует общепринятое обозначение 2-й и третьей степени чисел. Словосочетание «вторая степень» обыкновенно заменяется словом «квадрат», а взамен словосочетания «третья степень» традиционно говорят «куб».

5. Как видно из приведенных выше примеров, продолжительность и трудоемкость вычислений зависит от величины показателя степени числа. Возведение в квадрат либо куб – достаточно простая задача; возведение числа в пятую либо огромную степень теснее требует огромнее времени и аккуратности в вычислениях. Для убыстрения данного процесса и исключения ошибок дозволено воспользоваться особыми математическими таблицами либо инженерным калькулятором.

Для короткой записи произведения одного и того же числа самого на себя математики придумали представление степени. Следственно выражение 16*16*16*16*16 дозволено записать больше коротким методом. Оно будет иметь вид 16^5. Выражение будет читаться как число 16 в пятой степени.

Вам понадобится

  • Бумага, ручка.

Инструкция

1. В всеобщем виде степень записывается как a^n. Эта запись обозначает, что число a умножается на себя n раз.Выражение a^n именуется степень ю,a – это число, основание степени,n – это число, показатель степени. Скажем, a = 4, n = 5,Тогда запишем 4^5 = 4*4*4*4*4 = 1 024

2. Степень n может быть негативным числомn = -1, -2, -3 и т.д.Дабы вычислить негативную степень числа, его нужно опустить в знаменатель.a^(-n) = (1/a)^n = 1/a*1/a*1/a* … *1/a = 1/(a^n)Разглядим пример2^(-3) = (1/2)^3 = 1/2*1/2*1/2 = 1/(2^3) = 1/8 = 0,125

3. Как видно из примера, -3 степень от числа 2 дозволено вычислить различными методами.1) Вначале посчитать дробь 1/2 = 0,5; а после этого построить в степень 3,т.е. 0,5^3 = 0,5*0,5*0,5 = 0,1252) Вначале построить знаменатель в степень 2^3 = 2*2*2 = 8, а после этого вычислить дробь 1/8 = 0,125.

4. Сейчас вычислим -1 степень для числа, т.е. n = -1. Правила, рассмотренные выше, подходят для этого случая.a^(-1) = (1/a)^1 = 1/(a^1) = 1/aНапример, построим число 5 в -1 степень 5^(-1) = (1/5)^1 = 1/(5^1) = 1/5 = 0,2.

5. Из примера наглядно видно, что число в -1 степени – это обратная дробь от числа.Предположим число 5 в виде дроби 5/1, тогда 5^(-1) дозволено арифметически не считать, а сразу написать дробь, обратную 5/1, это 1/5.Так, 15^(-1) = 1/15,6^(-1) = 1/6,25^(-1) = 1/25

Обратите внимание!
При возведении числа в негативную степень следует помнить, что число не может быть равно нулю. Согласно правилу, мы обязаны число опустить в знаменатель. А нуль не может быть в знаменателе, так как на нуль разделять невозможно.

Полезный совет
Изредка при работе со степенями для облегчения расчета дробное число намеренно заменяют целым в -1 степени1/6 = 6^(-1)1/52 = 52^(-1).

При решении арифметических и алгебраических задач изредка требуется построить дробь в квадрат . Проще каждого это сделать, когда дробь десятичная – довольно обыкновенного калькулятора. Впрочем если дробь обычная либо смешанная, то при возведении такого числа в квадрат могут появиться некоторые затруднения.

Вам понадобится

  • калькулятор, компьютер, приложение Excel.

Инструкция

1. Дабы построить десятичную дробь в квадрат , возьмите инженерный калькулятор, наберите на нем возводимую в квадрат дробь и нажмите на клавишу возведения во вторую степень. На большинстве калькуляторов эта кнопка обозначена как «х?». На стандартном калькуляторе Windows функция возведения в квадрат выглядит как «x^2». Скажем, квадрат десятичной дроби 3,14 будет равен: 3,14? = 9,8596.

2. Дабы построить в квадрат десятичную дробь на обыкновенном (бухгалтерском) калькуляторе, умножьте это число само на себя. Кстати, в некоторых моделях калькуляторов предусмотрена вероятность возведения числа в квадрат даже при отсутствии особой кнопки. Следственно заблаговременно ознакомьтесь с инструкцией к определенному калькулятору. Изредка примеры «хитроумного» возведения в степень приведены на задней крышке либо на коробке калькулятора. Скажем, на многих калькуляторах для возведения числа в квадрат довольно нажать кнопки «х» и «=».

3. Для возведения в квадрат обычной дроби (состоящей из числителя и знаменателя), возведите в квадрат по отдельности числитель и знаменатель этой дроби. То есть воспользуйтесь дальнейшим правилом:(ч / з)? = ч? / з?, где ч – числитель дроби, з – знаменатель дроби.Пример: (3/4)? = 3?/4? = 9/16.

4. Если возводимая в квадрат дробь – смешанная (состоит из целой части и обычной дроби), то заранее приведите ее к обычному виду. То есть примените следующую формулу:(ц ч/з)? = ((ц*з+ч) / з)? = (ц*з+ч)? / з?, где ц – целая часть смешанной дроби.Пример: (3 2/5)? = ((3*5+2) / 5)? = (3*5+2)? / 5? = 17? / 5? = 289/25 = 11 14/25.

5. Если возводить в квадрат обычные (не десятичные) дроби доводится непрерывно, то воспользуйтесь программой MS Excel. Для этого введите в одну из клеток таблицы следующую формулу: =СТЕПЕНЬ(A2;2) где А2 – адрес ячейки, в которую будет вводиться возводимая в квадрат дробь .Дабы осведомить программе, что с вводимым числом нужно обращаться как с обычной дробь ю (т.е. не преобразовывать ее в десятичный вид), наберите перед дробь ю цифру «0» и знак «пробел». То есть для ввода, скажем, дроби 2/3 надобно ввести: «0 2/3» (и нажать Enter). При этом в строке ввода отобразится десятичное представление введенной дроби. Значение и представление дроби непринужденно в клетке сохранится в начальном виде. Помимо того, при применении математических функций, доводами которых являются обычные дроби, итог также будет представлен в виде обычной дроби. Следственно квадрат дроби 2/3 будет представлен как 4/9.

Способ выделения квадрата двучлена используется при облегчении массивных выражений, а также для решения квадратных уравнений. На практике его традиционно комбинируют с другими приемами, включая разложение на множители, группировку и пр.

Инструкция

1. Способ выделения полного квадрата двучлена основан на применении 2-х формул сокращенного умножения многочленов. Эти формулы являются частными случаями Бинома Ньютона для 2-й степени и разрешают упростить желанное выражение так, дабы дозволено было провести дальнейшее сокращение либо разложение на множители:(m + n)² = m² + 2·m·n + n²;(m – n)² = m² – 2·m·n + n².

2. Согласно этому способу из начального многочлена требуется выделить квадраты 2-х одночленов и сумму/разность их двойного произведения. Использование этого способа имеет толк, если старшая степень слагаемых не поменьше 2. Представим, дано задание разложить на множители с понижением степени следующее выражение:4·y^4 + z^4

3. Для решения задачи необходимо воспользоваться способом выделения полного квадрата. Выходит, выражение состоит из 2-х одночленов с переменными четной степени. Следственно, дозволено обозначить всякий из них через m и n:m = 2·y²; n = z².

4. Сейчас надобно привести начальное выражение к виду (m + n)². В нем теснее присутствуют квадраты этих слагаемых, но не хватает двойного произведения. Необходимо добавить его неестественно, а потом вычесть:(2·y²)² + 2·2·y²·z² + (z²)² – 2·2·y² ·z² = (2·y² + z²)² – 4·y²·z².

5. В получившемся выражении дозволено увидеть формулу разности квадратов:(2·y² + z²)² – (2·y·z)² = (2·y² + z² – 2·y·z)· (2·y² + z² + 2·y·z).

6. Выходит, способ состоит из 2-х этапов: выделение одночленов полного квадрата m и n, прибавление и вычитание их двойного произведения. Способ выделения полного квадрата двучлена может использоваться не только самосильно, но и в комбинации с другими способами: вынесения за скобки всеобщего множителя, замена переменной, группировки слагаемых и пр.

7. Пример 2.Выделите полный квадрат в выражении:4·y² + 2·y·z + z².Решение.4·y² + 2·y·z + z² = = (2·y)² + 2·2·y·z + (z) ² – 2·y·z = (2·y + z)² – 2·y·z.

8. Способ используется при нахождении корней квадратного уравнения. Левая часть уравнения представляет собой трехчлен вида a·y? + b·y + c, где a, b и c – какие-то числа, причем a ? 0. a·y? + b·y + c = a·(y? + (b/a)·y) + c = a·(y? + 2·(b/(2·a))·y) + c = a·(y? + 2·(b/(2·a))·y + b?/(4·a?)) + c – b?/(4·a) = a·(y + b/(2·a)) ? – (b? – 4·a·c)/(4·a).

9. Эти расчеты приводят к представлению дискриминанта, тот, что равен (b? – 4·a·c)/(4·a), а корни уравнения равны:y_1,2 = ±(b/(2 a)) ± ? ((b? – 4·a·c)/(4·a)).

Операция возведения в степень является «бинарной», то есть имеет два непременных входных параметра и один выходной. Один из начальных параметров именуется показателем степени и определяет число раз, которое операция умножения должна быть применена ко второму параметру – основанию. Основание может быть как правильным, так и негативным числом .

Инструкция

1. Используйте при возведении в степень негативного числа обыкновенные для этой операции правила. Как и для позитивных чисел, возведение в степень обозначает умножение начальной величины на саму себя число раз, на единицу меньшее показателя степени. Скажем, дабы построить в четвертую степень число -2, его надобно трижды умножить на себя: -2?=-2*(-2)*(-2)*(-2)=16.

2. Умножение 2-х негативных чисел неизменно дает позитивное значение, а итогом этой операции для величин с различными знаками будет число негативное. Из этого дозволено сделать итог, что при возведении негативных значений в степень с четным показателем неизменно должно получаться число позитивное, а при нечетных показателях итог неизменно будет поменьше нуля. Используйте это качество для проверки произведенных расчетов. Скажем, -2 в пятой степени должно быть числом негативным -2?=-2*(-2)*(-2)*(-2)*(-2)=-32, а -2 в шестой – позитивным -2?=-2*(-2)*(-2)*(-2)*(-2)*(-2)=64.

3. При возведении негативного числа в степень показатель может быть приведен в формате обычной дроби – скажем, -64 в степени?. Такой показатель обозначает, что начальную величину следует построить в степень, равную числителю дроби, и извлечь из нее корень степени, равной знаменателю. Одна часть этой операции рассмотрена в предыдущих шагах, а тут вам следует обратить внимание на иную.

4. Извлечение корня – нечетная функция, то есть для негативных вещественных чисел она может использоваться только при нечетном показателе степени. При четном эта функция значения не имеет. Следственно, если в условиях задачи требуется построить негативное число в дробную степень с четным знаменателем, то задача решения не имеет. В остальных случая проделайте вначале операции из первых 2-х шагов, применяя в качестве показателя степени числитель дроби, а после этого извлеките корень со степенью знаменателя.

Степенной формат записи числа – это сокращенная форма записи операции умножения основания на само себя. С числом, представленным в такой форме, дозволено осуществлять те же операции, что и с всякими другими числами, в том числе и возводить их в степень . Скажем, дозволено построить в произвольную степень квадрат числа и приобретение итога на современном ярусе становления техники не составит какой-нибудь сложности.

Вам понадобится

  • Доступ в интернет либо калькулятор Windows.

Инструкция

1. Для возведения квадрат а в степень используйте всеобщее правило возведения в степень числа, теснее имеющего степенной показатель. При такой операции показатели перемножаются, а основание остается бывшим. Если основание обозначить как x, а начальный и добавочный показатели степени – как a и b, записать это правило в всеобщем виде дозволено так: (x?)?=x??.

2. Для утилитарных расчетов проще каждого воспользоваться поисковой системой Google – в нее встроен дюже легкой в применении калькулятор. Скажем, если требуется построить в пятую степень квадрат числа 6, перейдите на основную страницу поисковика и введите соответствующий запрос. Сформулировать его дозволено так: (6^2)^5 – тут значок ^ обозначает степень . А дозволено самосильно рассчитать результирующий показатель степени в соответствии с формулой из предыдущего шага и сформулировать запрос так: 6^10. Либо доверить сделать это Google, введя такой запрос: 6^(2*5). Для всякого из этих вариантов калькулятор поисковика вернет идентичный результат: 60 466 176.

3. При отсутствии доступа в интернет вычислитель Google дозволено заменить, скажем, встроенным калькулятором Windows. Если вы используете версии Seven либо Vista этой ОС, раскройте основное меню системы и наберите каждого две буквы: «ка». Система отобразит в основном меню все программы и файлы, которые у нее ассоциируется с этим сочетанием. В первой строке будет ссылка «Калькулятор» – кликните по ней мышкой, и приложение будет запущено.

4. Нажмите сочетание клавиш Alt + 2, дабы в интерфейсе приложения возникла кнопка с функцией возведения в произвольную степень . После этого введите основание – в примере из второго шага это число 6 – и кликните вначале по кнопке x?, а после этого по кнопке x?. Введите показатель степени, в которую надобно построить квадрат – в использованном примере это число 5. Нажмите кнопку Enter, и калькулятор отобразит окончательный итог операции.

Видео по теме

Полезный совет
Дабы тренировка не была тоскливой, позовите на подмога друга. Пускай он пишет двузначное число, а вы - вывод возведения этого числа в квадрат. После этого меняйтесь местами.

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!