Биотехнология - это наука, изучающая возможность использовать живые организмы или продукты их жизнедеятельности для решения определенных технологических задач.

С помощью биотехнологий, происходит обеспечение определенных человеческих потребностей, например: разработка медицинских препаратов, модификация или создание новых видов растений и животных, что увеличивает качество пищевых продуктов.

Биотехнология в современной медицине

Биотехнология, как наука, зарекомендовала себя в конце ХХ века, а именно в начале 70-х годов. Все началось с генетической инженерия, когда ученые смогли перенести генетический материал из одного организма к другому без осуществления половых процессов. Для этого была использовано рекомбинантная ДНК или рДНК. Такой метод применяется для изменения или улучшения определенного организма.

Чтобы создать молекулу рДНК нужно:

  • извлечь молекулу ДНК из клетки животного или растения;
  • обработать изолированную клетку и плазмиду, а затем смешать их;
  • затем, измененная плазмида переносится в бактерию, а та в свою очередь приумножает копии информации, что были внесены в нее.

Медицинские биотехнологии подразделяются на 2 большие группы:

  1. Диагностические , которые, в свою очередь, бывают: химическими (определение диагностических веществ и параметров обмена); физическими (определение физических полей организма);
  2. Лечебные .

К медицинской биотехнологии относят такие производственные процессы, в ходе которых создаются биообъекты или вещества медицинского назначения. Это ферменты, витамины, антибиотики, отдельные микробные полисахариды, которые могут применяться как самостоятельные средства или как вспомогательные вещества при создании различных лекарственных форм, аминокислоты.

Так, методы биотехнологий применяются:

  • для производства человеческого инсулина путем использования генно-модифицированных бактерий;
  • для создания эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.

Медицинская генетика в будущем сможет не только предотвращать появление на свет неполноценных детей путем диагностирования генетических заболеваний, но и проводить пересадку генов для решения существующей проблемы.

Биотехнология в будущем даст человечеству огромные возможности не только в медицине, но и в других направлениях современных наук.

Биотехнологии в современной науке

Биотехнологии в современной науке несет огромную пользу. За счет открытия генной инженерии стало возможным выведения новых сортов растений и пород животных, которые принесут пользу сельскому хозяйству.

Изучения биотехнологии связано не только лишь с науками биологического направления. В микроэлектронике разработаны ион-селективные транзисторы на основе полевого эффекта (HpaI). Биотехнология необходима для повышения нефтеотдачи нефтяных пластов. Наиболее развитым направлением является использование биотехнологии в экологии для очистки промышленных и бытовых сточных вод. В развитие биотехнологии внесли свой вклад многие другие дисциплины, именно поэтому биотехнологии стоит отнести к комплексной науке.

Еще одной причиной активного изучения и усовершенствования знаний в биотехнологии стал вопрос в недостатке (или будущем дефиците) социально-экономических потребностей.

В мире существуют такие проблемы, как:

  • нехватка пресной или очищенной воды (в некоторых странах);
  • загрязнение окружающей среды различными химическими веществами;
  • дефицит энергетического ресурса;
  • необходимость усовершенствования и получения совершенно новые экологически чистых материалов и продуктов;
  • повышение уровня медицины.

Ученые уверенны, что решить эти и многие другие проблемы возможно при помощи биотехнологии.

Основные типовые технологические приемы современной биотехнологии

Биотехнологию можно выделить не только как науку, но еще и как сферу практической деятельности человека, которая отвечает за производство разного вида продукции при участии живых организмов или их клеток.

Теоретической основой для биотехнологии в свое время стала такая наука, как генетика, это случилось в ХХ веке. А вот практически биотехнология основывалась на микробиологической промышленности. Микробиологическая промышленность в свою очередь получила сильный толчок в развитии после открытия и активного производства антибиотиков.

Объектами, с которыми работает биотехнология, являются вирусы, бактерии, различные представители флоры и фауны, грибы, а также органоиды и изолированные клетки.

Наглядная биотехнология. Генная и клеточная инженерия

Генетическая и клеточная инженерия в сочетании с биохимией - это основные сферы современной биотехнологии.

Клеточная инженерия - выращивание в специальных условиях клеток различных живых организмов (растений, животных, бактерий), разного рода исследования над ними (комбинация, извлечение или пересадка).

Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4.

Генетическая (или генная) инженерия - отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы.

Биотехнологии клонирования

Клонирование - это процесс получения клонов (то есть потомков полностью идентичных прототипу). Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном.

В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий.

Уже в конце ХХ века ученые начали активное обсуждение клонирования человека. Таким образом, термин «клон» стал употребляться в СМИ, а позже и в литературе и искусстве.

Что касается бактерий, то у них клонирование - это практически единственный способ размножения. Именно «клонирование бактерий» употребляется в том случаи, когда процесс искусственный и им управляет человек. Этот термин не касается естественного размножения микроорганизмов.

Генетическая инженерия

Генная инженерия - это искусственные изменения в генотипе микроорганизма, вызванное вмешательством человека, для получения культур с необходимыми качествами.

Генная инженерия занимается исследованиями и изучением не только микроорганизмов, но и человека, активно изучает заболевания, связанные с иммунной системой и онкологией.

Клеточная биотехнология растений

Клеточная биотехнология основывается на применении клеток, тканей и протопластов. Чтобы успешно управлять клетками, необходимо отделить их от растения и создать им все необходимые условия для успешного существования и размножения вне организма растения. Такой метод выращивания и размножения клеток носит название «культуры изолированных тканей» и получил особое значение из-за возможности применения в биотехнологии.

Биотехнологии в современном мире и жизни человека

Потенциал, который открывает биотехнология для человека, велик не только в фундаментальной науке, но и в других сферах деятельности и областях знаний. При использовании биотехнологических методов стало возможно массовое производство всех необходимых белков.

Значительно проще стали процессы получения продуктов ферментации. В будущем биотехнологии позволят улучшать животных и растений. Учеными рассматриваются варианты борьбы с наследственными болезнями при помощи генной инженерии.

Генная инженерия, как основное направление в биотехнологии, значительно ускоряет решение проблемы продовольственного, аграрного, энергетического и экологического кризисов.

Самое большее влияние биотехнология оказывает на медицину и фармацевтику. Прогнозируется, что в будущем станет возможным диагностика и лечение тех заболеваний, которые имеют статус «неизлечимых».

Этические аспекты некоторых достижений в биотехнологии

После того, как стало известно, что некоторые научные лаборатории не только проводили опыты на человеческих эмбрионах, но и пытались произвести клонирование людей - пошла волна бурного обсуждения этого вопроса не только среди ученых, но и среди обычных людей.

В биотехнологии можно выделить две этические проблемы, связанные с клонированием человека:

  • терапевтическое клонирование (культивация человеческих эмбрионов для применения их клеток с целью лечения);
  • репродуктивное клонирование (создание человеческих клонов).

Современные достижения и проблемы биотехнологии

При помощи биотехнологии было и будет получено огромное количество продуктов для здравоохранения, сельского хозяйства продовольственной и химической промышленности. Стоит упомянуть, что многие из продуктов никаким другим способом не могли быть получены.

Что касается проблем, так основным образом - это этические аспекты, связанные с тем, что общество отрицает и считает негативным клонирование человека или человеческого эмбриона.

Современное состояние и перспективы биотехнологии

В биотехнологии активно начала развиваться отрасль микробного синтеза ценных для человечества веществ. Это может повлечь за собой смену распределения роли продовольственной базы, основанной на растениях и животных, в сторону микробного синтеза.

Получение экологически чистой энергии при помощи биотехнологий - еще одно важное и перспективное направление в науке.

Компании, разрабатывающие новые биотехнологии

Журнал «Forbes» представил список самых инновационных компаний мира по разработке биотехнологий, в него вошли такие компании, как: «Genentech», «Novartis International AG», «Merck & Co», «Pfizer», «Sanofi», «Perrigo». Все эти компании напрямую связаны с фармацевтикой и развиваются именно в этом направлении.

Многие из компаний успешно принимают активное участие в развитии российского рынка биотехнологий:

  1. «Novartis International AG» - компания занимается выведением вакцин и производством препаратов в сфере онкологии, одно из предприятий работает в СПб.
  2. «Pfizer» - производит безрецептурные препараты в разных отраслях медицины. Pfizer уже несколько лет реализует в России программу «Больше, чем образование» по соглашениям с МГУ им. М.В. Ломоносова и Санкт-Петербургской государственной химико-фармацевтической академией.
  3. «Sanofi» - компания занимается производством препаратов для лечения сахарного диабета и склероза. В России успешно работает уникальное предприятие компании - завод полного цикла по производству инсулинов «Санофи-Авентис Восток».

В России особая роль отводится Кластеру биомедицинских технологий Инновационного центра «Сколково», ОАО «РВК» и ОАО «Роснано». Фармацевтическими и медицинскими биотехнологиями занимаются компании ОАО «Акрихин», ООО «Герофарм», НПФ «Литех». Центр высоких технологий «Химрар» объединяет высокотехнологичные организации, ведущие разработки и производство инновационных 14 компаний, которые занимаются разработкой лекарственных препаратов на основе новейших «постгеномных» технологий.

Помимо этого, существуют и молодые стартапы, разрабатывающие новые биотехнологии:

  • «3Д Биопринтинг Солюшенс» на основе трёхмерной биопечати создает органы из стволовых клеток пациента;
  • «БиоМикроГели» предлагает разработки по очистке воды и почвы с помощью микрогелей.
  • биомедицинский холдинг «Атлас» проводит анализ микробиоты организма в рамках проекта «OhmyGut».
Читайте другие наши статьи:

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Учебник адресован учащимся 10 класса и рассчитан на преподавание предмета 1 или 2 часа в неделю.

Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

Какое значение для промышленности и сельского хозяйства имеет селекция микроорганизмов?

Биотехнология – это использование организмов, биологических систем или биологических процессов в промышленном производстве. Термин «биотехнология» получил широкое распространение с середины 70-х гг. XX в., хотя ещё с незапамятных времён человечество использовало микроорганизмы в хлебопечении и виноделии, при производстве пива и в сыроварении. Любое производство, в основе которого лежит биологический процесс, можно рассматривать как биотехнологию. Генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных – это различные аспекты современной биотехнологии.

Биотехнология позволяет не только получать важные для человека продукты, например антибиотики и гормон роста, этиловый спирт и кефир, но и создавать организмы с заранее заданными свойствами гораздо быстрее, чем с помощью традиционных методов селекции. Существуют биотехнологические процессы по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоёмах, получению топлива. Эти технологии основаны на особенностях жизнедеятельности некоторых микроорганизмов.

Появляющиеся современные биотехнологии изменяют наше общество, открывают новые возможности, но одновременно создают определённые социальные и этические проблемы.

Генная инженерия. Удобными объектами биотехнологии являются микроорганизмы, имеющие сравнительно просто организованный геном, короткий жизненный цикл и обладающие большим разнообразием физиологических и биохимических свойств.

Одной из причин сахарного диабета является недостаток в организме инсулина – гормона поджелудочной железы. Инъекции инсулина, выделенного из поджелудочных желез свиней и крупного рогатого скота, спасают миллионы жизней, однако у некоторых пациентов приводят к развитию аллергических реакций. Оптимальным решением было бы использование человеческого инсулина. Методами генной инженерии ген инсулина человека был встроен в ДНК кишечной палочки. Бактерия начала активно синтезировать инсулин. В 1982 г. инсулин человека стал первым фармацевтическим препаратом, полученным с помощью методов генной инженерии.


Рис. 107. Страны, выращивающие трансгенные растения. Практически всю площадь посевов трансгенных культур занимают генетически модифицированные сорта четырёх растений: сои (62 %), кукурузы (24 %), хлопчатника (9 %) и рапса (4 %). Уже созданы сорта трансгенного картофеля, помидоров, риса, табака, свёклы и других культур

Аналогичным способом в настоящее время получают гормон роста. Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона, инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня.

Так же как у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называют трансгенными или генетически модифицированными организмами (ГМО).

В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы (рис. 107).

Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведён на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей. Если этот опыт имел исключительно теоретическое значение, то эксперименты в Канаде имели уже явное практическое применение. Канадские учёные ввели в наследственный материал лосося ген другой рыбы, который активировал ген гормона роста. Это привело к тому, что лосось рос в 10 раз быстрее и набирал вес, в несколько раз превышающий норму.

Клонирование. Создание многочисленных генетических копий одного индивидуума с помощью бесполого размножения называют клонированием . У ряда организмов этот процесс может происходить естественным путём, вспомните вегетативное размножение у растений и фрагментацию у некоторых животных (). Если у морской звезды случайно оторвётся кусочек луча, из него образуется новый полноценный организм (рис. 108). У позвоночных животных этот процесс естественным путём не происходит.

Впервые успешный эксперимент по клонированию животных был осуществлён исследователем Гёрдоном в конце 60-х гг. XX в. в Оксфордском университете. Учёный пересадил ядро, взятое из клетки эпителия кишки лягушки-альбиноса, в неоплодотворённую яйцеклетку обычной лягушки, чьё ядро перед этим было разрушено. Из такой яйцеклетки учёному удалось вырастить головастика, превратившегося затем в лягушку, которая была точной копией лягушки-альбиноса. Таким образом, впервые было показано, что информации, содержащейся в ядре любой клетки, достаточно для развития полноценного организма.


Рис. 108. Регенерация морской звезды из одного луча

В дальнейшем исследования, проведённые в Шотландии в 1996 г., привели к успешному клонированию овцы Долли из клетки эпителия молочной железы матери (рис. 109).

Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий приём. На ранней стадии развития, когда клетки эмбриона ещё не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещённого в приёмную (суррогатную) мать, может развиться полноценный телёнок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами.

Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов.

При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению (рис. 110). Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения.


Рис. 109. Клонирование овцы Долли

Этические аспекты развития биотехнологии. Использование современных биотехнологий ставит перед человечеством много серьёзных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрёстном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага?

Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было.


Рис. 110. Этапы клонирования растений (на примере моркови)

В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Основное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях её генома.

Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчёркивается, что всякое изменение генома человека может производиться лишь на соматических клетках.

Но, пожалуй, наиболее серьёзные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должны происходить естественным путём.

Эксперименты по клонированию животных поставили перед научной общественностью ряд серьёзных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учёными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность всё ещё очень высока. Однако существует проблема, ещё более серьёзная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным её реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению учёных, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли.

Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки.

Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки – биоэтики. Биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни.

Вопросы для повторения и задания

1. Что такое биотехнология?

2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?

3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.

5. Какие организмы называют трансгенными?

6. В чём преимущество клонирования по сравнению с традиционными методами селекции?

Подумайте! Выполните!

1. Какие перспективы в развитии народного хозяйства открывает использование трансгенных животных?

2. Может ли современное человечество обойтись без биотехнологии? Организуйте выставку или сделайте стенную газету «Биотехнология: прошлое, настоящее, будущее».

3. Организуйте и проведите дискуссию на тему «Клонирование: за и против».

4. Приведите примеры продуктов, входящих в ваш рацион, которые были созданы с использованием биотехнологических процессов.

5. Докажите, что биологическая очистка воды является биотехнологическим процессом.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Клеточная инженерия. В 70-х гг. прошлого века в биотехнологии стала активно развиваться клеточная инженерия. Клеточная инженерия позволяет создавать клетки нового типа на основе различных манипуляций, чаще всего гибридизации, т. е. слияния исходных клеток или их ядер. В одну из исследуемых клеток помещают ядро, принадлежащее клетке другого организма. Создают условия, при которых эти ядра сливаются, а затем происходит митоз , и образуются две одноядерные клетки, каждая из которых содержит смешанный генетический материал. Впервые такой опыт осуществил в 1965 г. английский учёный Г. Харрис, соединив клетки человека и мыши. Впоследствии были получены целые организмы, представляющие собой межвидовые гибриды, полученные методом клеточной инженерии. Такие гибриды отличаются от гибридов, полученных половым путём, тем, что в них находится цитоплазма обоих родителей (вспомним, что при обычном оплодотворении цитоплазма сперматозоида в яйцеклетку не проникает). Слияние клеток используют для получения гибридов с полезными свойствами между отдалёнными видами, которые обычным путём не скрещиваются. Удаётся также получать клеточные гибриды растений, несущие цитоплазматические гены (т. е. гены, находящиеся в митохондриях и пластидах), которые увеличивают устойчивость к различным вредным воздействиям.

Ваша будущая профессия

1. Что является предметом изучения науки геронтологии? Оцените, насколько развита эта наука в нашей стране. Есть ли в вашем регионе специалисты в этой области?

2. Как вы думаете, какими личными качествами должны обладать люди, работающие в медико-генетических консультациях? Объясните свою точку зрения.

3. Что вы знаете о профессиях, связанных с материалом этой главы? Найдите в Интернете названия нескольких профессий и подготовьте небольшое (не более 7–10 предложений) сообщение о той профессии, которая вас наиболее впечатлила. Объясните свой выбор.

4. Используя дополнительные источники информации, выясните, что является предметом изучения эмбриолога. Где можно приобрести такую специальность?

5. Какими знаниями должны обладать специалисты, занимающиеся селекционной работой? Объясните свою точку зрения.

<<< Назад
Вперед >>>

Посетители конференции Startup Village, прошедшей на минувшей неделе в Сколково, имели уникальную возможность заглянуть в то недалекое будущее, когда человечество, вынужденное пересмотреть рацион питания, начнет получать значительную долю белков за счет насекомых

На одном из стендов на выставке стартапов расположились производители кормового протеина из личинок мух, представляющие липецкую компанию «Новые Биотехнологии». Пока корм предназначен для животных, но в будущем блюда из насекомых, как следует из многочисленных прогнозов, перестанут быть экзотикой и в человеческом меню. Попробовать продукт с исключительными питательными свойствами на Startup Village отважились пятеро смельчаков. Корреспондент сайт не рискнул последовать их примеру, но зато подробно расспросил дегустаторов, каков он, вкус еды будущего, а заодно узнал, что окруженные теплом и заботой селекционеров мухи из Липецка становятся гораздо плодовитее своих сородичей.

Алексей Истомин с продукцией "Новых Биотехнологий" на Startup Village. Фото: сайт

«Новые Биотехнологии» специализируются на производстве высокобелкового корма из высушенных и измельченных личинок зеленых мясных мух по аналогии с тем механизмом, над выработкой которого природа трудилась миллионы лет. «Животные, рыбы, птицы размножаются, питаются, оставляют после себя навоз и помет, умирают, а природа все это неустанно перерабатывает.. - Мухи откладывают на отходах яйца, из них появляются личинки, которые выделяют ферменты, ускоряющие процесс разложения и минерализации отходов. При этом личинки сами становятся кормом для животных, рыб и птиц. А оставшийся субстрат под воздействием дождей и солнца в виде органического удобрения попадает в почву и способствует бурному росту фитомассы, которая также является кормом для всего живого. Иными словами, происходит рециркуляция питательных веществ, причем безо всяких пестицидов и ядов. Только органика».

Этот природный процесс и заимствовали в компании «Новые Биотехнологии». Получившаяся в результате применения технологии биомасса, личинки мух, обладают высоким содержанием питательных веществ. На 50-70% биомасса состоит из сырого протеина, 20-30% приходятся на сырой жир, 5-7% - это сырая клетчатка.

При описании положительного эффекта применения кормового белка (коммерческое название - «Зоопротеин») в разных отраслях сельского хозяйства Алексей Истомин был весьма убедителен. «В свиноводстве применение в микродозах белково-липидного концентрата в качестве добавки в рацион поросят, свиней, хряков позволяет повысить усвояемость пищи и естественную резистентность организма болезням и вирусам, увеличить привес, активность и приплод, - перечисляет преимущества корма из личинок мух г-н Истомин. - Это происходит за счет содержания в «Зоопротеине» большого количества ферментов, хитина, меланина, иммуномодуляторов. В птицеводстве включение нашего кормового белка в состав рациона для цыплят-бройлеров, индеек, уток и другой птицы позволяет повысить ежедневный привес и снизить кормовой коэффициент. У кур-несушек наблюдается повышение яйценоскости, возрастает резистентность организма к болезням и вирусам, снижается смертность». В звероводстве добавление «Зоопротеина» в корм норок, песцов, лисиц приводит к улучшению качества меха и снижению процента брака. Животные имеют большую длину тела и обхват груди, следовательно, из них можно получить большее количество шкурок.

Слева направо: готовый корм, высушенные и живые личинки. Фото: сайт

Появление корма из мух обрадует и владельцев домашних питомцев. По словам Алексея Истомина, «у кошек и собак легче проходит течка и линька, повышается мышечный тонус и активность, шерсть становится более плотной; животные меньше болеют». Здоровее при добавлении белка из личинок мух в корм становятся и домашние птицы, их окрас становится ярче. Мальки аквариумных рыбок развиваются в два раза быстрее, причем выживаемость мальков приближается к 100%.

Чудодейственная технология возникла не на пустом месте - ее теоретические основы были заложены еще полвека назад во Всесоюзном научно-исследовательском институте животноводства, а также в Новосибирском государственном сельскохозяйственном институте. Там в лабораторных условиях всесторонне изучали кормовые добавки из личинок мух. Сейчас работы в этом направлении продолжаются Новосибирском государственном аграрном университете, ВНИИЖ им. Л.К. Эрнста, Институте проблем экологии и эволюции им. А.Н. Северцова. По словам Алексея Истомина, эффективность использования белкового корма, полученного в результате переработки отходов личинками мух, по сравнению с другими животными белками (рыбная и мясо-костная мука) подтверждена исследованиями, проведенными во Всероссийском научно-исследовательском институте животноводства и Всероссийском научно-исследовательском и технологическом институт птицеводства. Примечательно, что со временем актуальность этой технологии лишь растет, ведь мир столкнулся с острым дефицитом белков животного происхождения.

«То, что нам мешает, плохо пахнет и требует больших затрат, может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду»

В компании «Новые Биотехнологии» его оценивают в 25 млн тонн; в России аналогичный показатель - 1 млн тонн. С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%. Пока в сельском хозяйстве его основными источниками являются рыба (рыбная мука) и мясо-костная мука. «Самая качественная рыбная мука производится в Марокко, Мавритании и Чили, и ее стоимость увеличивается пропорционально издержкам на логистику. Цена рыбной муки за последние 15 лет выросла в 8 раз, - делится статистикой Алексей Истомин. - Многие производители сельскохозяйственной продукции отказываются от качественной импортной рыбной муки в пользу более дешевых и менее качественных аналогов, а также переходят на мясо-костную муку или растительные белки, в частности, сою. Использование растительных белков не позволяет достичь желаемого результата - такой протеин требует большого количества земельных ресурсов и не может в полной мере заменить животный белок по составу».

Проект "Новых Биотехнологий" вызвал интерес у вице-премьера Аркадия Дворковича и губернатора Ростовской области Василия Голубева. Фото: сайт

Кроме экономических, есть и экологические предпосылки смены кормовой парадигмы. Так, для изготовления 1 тонны муки требуется выловить 5 тонн промысловой рыбы. Учитывая, что потребность в животных белках велика, вылов рыбы достиг значительных показателей (170 млн тонн в 2015-м году). Экосистема не успевает воспроизвести рыбные запасы в морях. При изготовлении одной тонны рыбной муки в атмосферу выделяется почти 11 тонн углекислого газа. Дополнительные расходы на экологию в этом случае оценивается в 3,5 тысячи долларов. При производстве одной тонны муки из личинок мух в атмосферу попадает в 5 раз меньше СО2. То есть каждая произведенная тонна белка из личинок мух сохраняет 5 тонн рыбы в море.

«Вкус необычный, не похож ни на что. Зато этот белок укрепляет иммунитет и способствует росту мышечной массы»

Задумавшись об альтернативных источниках животного белка, исследователи обратили внимание на насекомых. На планете - более 90 тысяч видов мух, и каждый из них питается определенными отходами: растительными, навозом/пометом, пищевые отходы и т.д. «То, что нам мешает, плохо пахнет и требует больших затрат, - экологических, финансовых, энергетических - может помочь и работать на благо отечественного сельского хозяйства, принося дополнительную прибыль и снижая нагрузку на окружающую среду», - говорит Алексей Истомин. По крайне мере, опытное производство компании «Новые Биотехнологии» в Липецке доказывает перспективность использования технологии в промышленных условиях.

Фарш из Люси

Известные многим металлически-зелёные яркие мухи Lucilia caesar (в компании этот вид насекомым ласково именуют Люсей) на производстве в Липецке содержатся в специальных инсектариях. Там живет несколько десятков миллионов мух. Это во многом уникальные насекомые. Чтобы улучшить их репродукционные способности, ученые более двух лет вели кропотливую селекционную работу, по определенной методике скрещивая насекомых. Если в природе одна муха делает кладку в 60 яиц, то у липецких насекомых кладка (и, следовательно, количество личинок и получившегося из них корма) - в среднем в три раза больше. Никаких генетических манипуляций над мухами специалисты «Новых Биотехнологий» не производят, речь идет о «традиционной» селекции, уверяет г-н Истомин.Показывая на затянутую мелкой сеткой клетку-садок с роящимися насекомыми на стенде, он продолжает: «Еще вчера здесь было всего 6 мух; всего за сутки их количество достигло несколько сотен. Это стало возможным благодаря правильному подбору цикла развития кукол, называемых еще пупариями. Мы подгадали цикл таким образом, чтобы сегодня их стало намного больше. Завтра их количество еще подрастет». Отчасти этот процесс сдерживался не слишком подходящей погодой: оптимальная температура для превращения куколки в муху - около 30-ти градусов. Несмотря на то, что на Startup Village по ночам насекомых заносили в помещение, температура там была ниже.

На производстве в Липецке мухам - полное раздолье. Фото: "Новые Биотехнологии".

На производстве в Липецке мухам - полное раздолье, там их оберегают и от неблагоприятных условий, и от стресса. Мухи содержатся в специальных клетках-садках, в которых есть вода, сахар, сухое молоко и боксы с мясным фаршем, где мухи делают кладки яиц. Кладки вынимают ежесуточно. Контроль качества и чистоты популяции осуществляет главный технолог. Для этого отбирают личинки, которые в специальных условиях окукливаются и в виде куколок хранятся в холодильной камере. При необходимости куколки помещают в клетки инсектария, и через некоторое время из них появляются мухи.

Как только из яиц появились личинки, их перемещают в выростной цех. В специальных лотках на подстилке из опилок размещают кормовой субстрат и кладки яиц. Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Период откармливания и активного роста составляет 3-4 суток. Затем выросшие личинки оказываются на выгонке. Так называют процесс отделения личинок от органического субстрата. После биомассу высушивают и отправляют на хранение.

Мухи растут на мясе с птицефабрики, которая находится недалеко от опытного производства компании «Новые биотехнологии». Личинки, выращенные на мясе птицы, обладают более высокими показателями содержания питательных веществ, чем те, которые культивировались на навозе и помёте. При этом запасов мяса должно быть много - чтобы произвести 1 кг «Зоопротеина», необходимо вырастить 3,5 кг живых личинок, для чего требуется 10 кг мясных отходов.

С 1961 года население Земли выросло более чем в два раза, а мировое потребление мяса - в 4 раза. По прогнозам, до 2030 года глобальное потребление животного белка увеличится на 50%

«Среднестатистический падеж на птицефабриках составляет 5% от общего поголовья. Такой вид отходов доставляет большое количество хлопот птицеводческим хозяйствам. Это и экологические вопросы (надо утилизировать), и финансовые (за утилизацию надо платить), и организационные (собирать, хранить, доставлять, учитывать). Поэтому применение нашего метода наиболее эффективно непосредственно на птицефабрике, что позволяет делать производство птицы безотходным, - пояснил Алексей Истомин. - В целом, рост объемов сельскохозяйственного производства неминуемо влечёт за собой увеличение негативного влияния на окружающую среду. По данным Минсельхоза, в России общая площадь земель, загрязненных сельскохозяйственными отходами, превышает 2,4 млн гектаров. В 2015-м году суммарное количество таких отходов превысило 380 млн тонн. В стране практически отсутствует культура переработки отходов сельского хозяйства. Счет таким производствам идет на единицы».

Опытное производство в Липецке. Фото: "Новые Биотехнологии"

Сложность промышленного внедрения технологии обусловлена, прежде всего, административными и экологическими факторами. «За границей, в частности, в Китае и Индонезии используется бассейновый («открытый») метод, поясняет Истомин. - Он неприемлем в наших условиях, поскольку личинки в процессе жизнедеятельности вырабатывают большое количество аммиака. В нашем проекте предложен «закрытый» метод с использованием выростных шкафов для мух, оборудованных локальной вытяжной вентиляцией, микробиологическим фильтром для очистки воздуха, особыми системами приготовления сырья, инфракрасной сушки. Все это позволяет максимально выполнить требования, предъявляемые к экологической безопасности».

Личинки очень прожорливы и быстро растут, увеличиваясь в размере до 350 раз за сутки. Фото: "Новые Биотехнологии"

Сейчас компания «Новые Биотехнологии» находится в процессе получения статуса резидента «Сколково». Команда рассчитывает на помощь Фонда главным образом в сертификации продукции. В России отсутствует нормативная база, связанная с регламентацией использования технологии переработки отходов личинками мух, поэтому, рассказывает Алексей Истомин, «приходится изощряться». При этом контролирующие инстанции констатируют безопасность продукции: «Липецкая облветлаборатория» производит исследования живой биомассы на наличие сальмонелл, генома возбудителей орнитоза и гриппа у птиц, яиц и личинок гельминтов. У высушенной биомассы личинок мух определяется массовая доля сырого протеина, массовая доля сырого жира, влажность и токсичность. «Тульская межобластная ветеринарная лаборатория» проводит исследования органического удобрения зоогумуса на наличие патогенной флоры. Результаты каждого исследования оформлены протоколом».

Собеседник сайт убежден: в обозримом будущем со вкусом белка из насекомых познакомятся на только животные, но и люди. Эту точку зрения разделяет все больше специалистов. Так, три года назад Продовольственная и сельскохозяйственная организация ООН выпустила исследование, в котором говорилось, что в рационе 2 миллиардов человек в той или иной степени насекомые присутствуют уже сейчас. Чтобы справиться с голодом и загрязнением окружающей среды, человечеству следует есть больше насекомых, призвали составители отчета.

Тем более что, как свидетельствует личный опыт Алексея Истомина, это не так страшно. Вот уже несколько месяцев он добавляет столовую ложку белка из насекомых в утренний шейк из молока, банана и прочих традиционных ингредиентов. «Вкус необычный, не похож ни на что. Зато укрепляет иммунитет и способствует росту мышечной массы», - рассказывает Алексей.

Baklanov Mikhail and 8 others like this" data-format="people who like this" data-configuration="Format=%3Ca%20class%3D%27who-likes%27%3Epeople%20who%20like%20this%3C%2Fa%3E" >

Биотехнология – новое бурно развивающееся направление биологии. Этапы развития биотехнологии. Основные направления в биотехнологии

1Биотехнология – новая отрасль науки и производства, основанная на использовании биологических процессов и объектов для производства экономически важных веществ и создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. В буквальном смысле биотехнология – это «биология + технология», то есть применение фундаментальных биологических знаний в практической деятельности, направленной на производство лекарственных препаратов, ферментов, белков, красителей, ароматических веществ, витаминов и целого ряда биологически активных соединений. Кроме того, речь идет об использовании биотехнологических методов в селекции и конструировании принципиально новых организмов, ранее не существовавших в природе.

Биотехнология растений является самостоятельной дисциплиной, хотя по своим теоретическим и методологическим принципам может рассматриваться как часть общей биотехнологии. Специфика биотехнологии растений предопределена биологическими особенностями растений как особого царства живого мира.

В историческом аспекте человечество всегда использовало растения для получения жизненно важных продуктов. В этом смысле к биотехнологии можно отнести и традиционное растениеводство, и другие агротехнологии. Однако существуют принципиальные различия между биотехнологией и агротехнологией. Как известно, агротехнология имеет дело с целыми растениями и их популяциями, тогда как биотехнология основана на использовании культуры клеток и их популяций.

Следовательно, основным объектом биотехнологии растений являются отдельные клетки, органы, изолированные из целого растения и выращиваемые вне организма на искусственной питательной среде в асептических условиях.

Такие выращиваемые in vitro клетки, ткани, органы называются культурой клеток, тканей, органов – в зависимости от того, что изолируется из растения и культивируется. Однако все эти способы культивирования в последнее время стали называться одним термином «культура клеток растений», ибо в конечном счете культивируемой единицей является клетка.

Клеточные культуры с каждым годом находят все большее применение в самых разнообразных областях биологии, медицины и сельского хозяйства. Их используют при решении таких общебиологических проблем, как выяснение механизмов дифференцировки и пролиферации, взаимодействия клеток со средой, адаптации, старения, биологической подвижности, злокачественной трансформации и многих других. Важную роль клеточные культуры играют в биотехнологии при производстве вакцин и биологически активных веществ. Они являются исходным материалом для создания клеток-продуцентов, используются в целях повышения продуктивности сельскохозяйственных животных и для выведения новых сортов растений. Культуры клеток применяются для диагностики и лечения наследственных заболеваний, в качестве тест-объектов при испытании новых фармакологических веществ, а также для сохранения генофонда исчезающих видов животных и растений.

Биотехнология – это управляемое получение для народного хозяйства, а также для медицины целевых продуктов с помощью биологических агентов: микроорганизмов, вирусов клеток животных и растений, а также с помощью внеклеточных веществ и компонентов клетки. Биотехнология имеет глубокие исторические корни, а за последние 10-15 лет бурного развития оформилась как отдельная отрасль науки и производства.

Основными компонентами биотехнологического процесса являются: биологический агент, субстрат, целевой продукт, аппаратура и совокупность методов для управления процессом.

Биотехнологическая отрасль является одной из самых бурно развивающихся и является важным критерием для оценки уровня научно-исследовательского потенциала цивилизованной страны. Наглядное свидетельство того, что основой очередной волны экономического развития станут различные отрасли биотехнологии (сельскохозяйственная, пищевая, медицинская), - динамика курса акций соответствующих компаний. До недавнего времени биотехнологический бизнес мало выделялся из общей группы высоких технологий, однако нестабильность компьютерных магнатов и ряда крупных концернов торгующих природными ресурсами изменило мнение экономических аналитиков.

Котировка акций биотехнологических компаний оказались мене подвержены падению, так как продукция полученная на основе клеточных технологий нова и перспективна. Инвестиции в биосектор привели к беспрецендентному технологическому рывку. В Германии и Франции начаты крупномасштабные полевые испытания генетически модифицированных сортов кукурузы. Японские биотехнологии получили генетически модифицированную кукурузу, устойчивую к насекомым-вредителям. Некоторые компании находятся на грани создания революционных препаратов для различных видов рака, в первую очередь лейкемии. Три года назад одной американской компанией было вложено большое количество денег в биотехнологическую лабораторию в Калифорнии и теперь по данным представителей компании они близки к созданию средств извлечения ряда серьезных недугов, например, болезни Альцгеймера.

2Термин биотехнология произошел от греческих слов: «биос» и «техне». «Биос» – жизнь, «техне» - вить прясть, делать что-то своими руками. Значит, биотехнология – это производство с помощью живых существ, совокупность промышленных методов, использующих живые организмы и биологические процессы для производства различных продуктов.

Биотехнология - это интегрированное использование биохимии, микробиологии и инженерных наук с целью достижения промышленного применения способностей микроорганизмов, культур клеток тканей и их частей. Объекты биотехнологии – микробы (грибы, бактерии, вирусы, простейшие) или клетки других организмов (растения, животные), биологически активные вещества специального назначения (иммобилизованные ферменты, катализирующие синтез или распад).

Типичные методы биотехнологии - крупномасштабное глубинное культивирование биообъектов в периодическом или непрерывном режиме, выращивание клеток растительных и животных тканей в особых условиях.

БИОХИМИЯ МИКРОБИОЛОГИЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ГЕНЕТИКА МЕХАНИЧЕСКАЯ ТЕХНОЛОГИЯ БИОТЕХНОЛОГИЯ БИОХИМИЧЕСКАЯ МЕХАНИЧЕСКАЯ ТЕХНОЛОГИЯ ТЕХНОЛОГИЯ ЭЛЕКТРОНИКА ТЕХНОЛОГИЯ ПИЩЕВЫХ ДРУГИЕ ДИСЦИПЛИНЫ ПРОДУКТОВ Рисунок 1. Междисциплинарная природа биотехнологии

3 Развитие биотехнологии в огромной степени определяется исследованиями в области микробиологии, биохимии, энзимологии и генетики организмов. Современная биотехнология как наука возникла в начале сороковых годов и получила ускоренное развитие с 1953 г., после эпохального открытия Джеймса Уотсона и Френсиса Крика о химической структуре и пространственой организации двойной спирали молекулы ДНК. Новое стратегическое ее направление – генетическая инженерия – родилось к 1972 г., когда в лаборатории Поля Берга впервые была синтезирована рекомбинантная молекула ДНК, что окончательно закрепило за биотехнологией и ее центральным звеном – биоинженерией (ядерной биологией) – важнейшее место в современной науке.



«Межпиковые» работы выдающихся биологов Г. Бойера, С. Коэна, Д. Морра, А.Баева, А.Белозерского, О. Эйвери, Г. Гамова, Ф. Жакоба, Ж.Моно и др. дополнили последовательный ряд важнейших открытий по идентификации генов и ферментов, выделению молекул ДНК из растительных, микробных и животных клеток, расшифровке генетического кода, а также механизмов экспрессии генов и биосинтеза белка у прокариот и эукариот.

В 50-е годы в биотехнологии возникает еще одно важное направление – клеточная инженерия. Основателями его являются П.Ф.Уайт (США) и Р. Готре (Франция). В последующие годы в институте физиологии растений СССР, а затем Российской Академии наук под руководством А.А.Курсанова, Р.Г. Бутенко были развернуты исследования в этой области с привлечением многих молодых ученых страны.

Генетическая и клеточная инженерия определили главные направления современной биотехнологии, методы которой получили широкое развитие в 80-е годы и используются во многих областях науки и производства в нашей стране и за рубежом.

Биотехнология как наука может рассматриваться в двух временных и сущностных измерениях: современном и традиционном, классическом.

Новейшая биотехнология (биоинженерия) – это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения.

В традиционном, классическом смысле биотехнологию можно определить как науку о методах и технологиях производства, транспортировки, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных (природных и селекционных) растений, животных и микроорганизмов, в естественных и искусственных условиях.

Высшим достижением новейшей биотехнологии является генетическая трансформация, перенос чужеродных (природных или искусственно созданных) донорских генов в клетки-реципиенты растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать принципиально новые задачи по созданию растений, животных и микроорганизмов с повышенной устойчивостью к стрессовым факторам среды, высокой продуктивностью и качеством продукции, по оздоровлению экологической обстановки в природе и всех отраслях производства.

Для достижения этих целей предстоит преодолеть определенные трудности в повышении эффективности генетической трансформации и, прежде всего, в идентификации и клонировании генов, создании их банков, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, создании надежных векторных систем и обеспечении высокой устойчивости экспрессии генов. Уже сегодня во многих лабораториях мира с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, используемые в коммерческих целях.

Вопрос 1. Что такое биотехнология?

Биотехнология — это использование ор-ганизмов, биологических систем или биологи-ческих процессов в промышленном производ-стве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных расте-ний и животных, использование микроорга-низмов в хлебопечении, виноделии, производ-стве лекарств и др.

Вопрос 2. Какие проблемы решает генная ин-женерия? С какими трудностями связаны исследования в этой области?

Методы генной инженерии позволяют ввес-ти в генотип одних организмов (например,бактерий) гены других организмов (напри-мер, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона рос-та. Путем создания генетически модифициро-ванных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для ген-ной инженерии является наблюдение и конт-роль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужерод-ных генов. Существует также опасность само-произвольного переноса (миграции) чужерод-ных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ра-ди собственного блага?

Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

Существует несколько причин повышения интереса к селекции микроорганизмов:

  • легкость селекции (по сравнению с рас-тениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
  • огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витами нов до выделения из руд редких химических элементов);
  • простота генно-инженерных манипу-ляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает рабо-тать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.

В результате на сегодняшний день сущест-вует огромное число примеров использования новых штаммов бактерий на практике: произ-водство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.

Вопрос 4. Приведите примеры промышленно-го получения и использования продуктов жизнеде-ятельности микроорганизмов.

С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спир-та; дрожжи используют в хлебопечении и ви-ноделии.

С 1982 г. в промышленных масштабах по-лучают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бак-терии. В настоящее время налажен синтез трансгенного гормона роста, который исполь-зуется для лечения карликовости у детей.

Микроорганизмы участвуют также в биотех-нологических процессах по очистке сточных мод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.

Вопрос 5. Какие организмы называют транс-генными?

Трансгенными (генетически модифициро-ванными) называют организмы, содержащие искусственные дополнения в геноме. Приме-ром (помимо упомянутой выше кишечной па-лочки) могут служить растения, в ДНК кото-рых встроен фрагмент бактериальной хро-мосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В резуль-тате получены сорта кукурузы, риса, картофе-ля, устойчивые к вредителям и не требующие использования пестицидов. Интересен при-мер лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быст-рее, и вес рыб оказался гораздо больше нормы.

Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?

Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции. Материал с сайта

Клонирование дает возможность работать с отдельными клетками или небольшими заро-дышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии не-дифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.

При необходимости можно использовать и клонирование растений. В этом случае селек-ция происходит в клеточной культуре (на ис-кусственно культивируемых изолированных клетках). И лишь затем из клеток, обладаю-щих необходимыми свойствами, выращивают полноценные растения.

Наиболее известный пример клонирова-ния — пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • презентация на тему биотехнология достижения и перспективы развития
  • биотехнологии клонирование с видео
  • как вы думаете почему селекция микроорганизмов приобретает в настоящее время
  • в чем приимущество клонирования по сравнению с традиционными методами селекции?
  • почему селекция микроорганизмов приобретает в наше время